WasmEdge项目中的WASI-NN流式扩展实现解析
2025-05-25 00:48:53作者:邓越浪Henry
WasmEdge作为高性能WebAssembly运行时环境,近期在其WASI-NN(WebAssembly系统接口神经网络)模块中实现了重要的流式扩展功能,这一改进显著提升了大型语言模型(LLM)在WebAssembly环境中的运行体验。
背景与需求
传统WASI-NN规范在执行神经网络推理时采用批处理模式,即一次性完成所有计算并返回完整结果。这种模式在处理大型语言模型时存在明显不足,因为LLM通常需要逐步生成输出token。为解决这一问题,WasmEdge团队对WASI-NN规范进行了扩展,引入了流式处理能力。
关键技术实现
WasmEdge实现的流式扩展主要包含三个核心函数:
- compute_single:执行单步推理计算,与标准compute函数不同,它专门设计用于逐步生成输出
- get_output_single:获取单步计算产生的输出结果
- fini_single:显式释放单步计算使用的资源
这种设计实现了独立的生命周期管理,开发者可以精确控制流式推理过程中资源的创建和释放。
架构设计考量
在实现NNRPC(神经网络远程过程调用)支持时,团队采用了以下架构设计:
- 协议扩展:首先更新了wasi-nn的proto文件定义,确保RPC接口能够支持新的流式操作
- 后端抽象:通过HostFuncCaller设计,提供了与具体神经网络后端无关的统一调用接口
- 资源管理:明确区分了流式操作与传统操作的生命周期管理策略
技术挑战与解决方案
在实现过程中,开发团队遇到了类型转换异常(std::bad_cast)等技术挑战。通过以下方式解决了这些问题:
- 严格类型检查确保接口调用安全
- 完善的错误处理机制
- 详尽的测试用例覆盖
应用价值
这一扩展为WasmEdge带来了显著的性能优势:
- 降低延迟:用户可以逐步获取输出结果,无需等待完整计算完成
- 资源效率:精细化的资源管理减少了内存占用
- 用户体验:更符合LLM应用的交互模式
总结
WasmEdge对WASI-NN规范的流式扩展,不仅提升了大型语言模型在WebAssembly环境中的运行效率,也为开发者提供了更灵活、更高效的神经网络推理接口。这一技术创新进一步巩固了WasmEdge在边缘计算和AI推理领域的技术领先地位。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258