sktime预测器中Direct与Recursive降维方法的技术验证方案
2025-05-27 13:15:30作者:庞队千Virginia
在时间序列预测领域,sktime库提供了两种重要的降维预测方法:DirectReductionForecaster(直接降维预测器)和RecursiveReductionForecaster(递归降维预测器)。为确保这两种方法的正确性和可靠性,我们需要建立一套完善的方法论测试验证体系。
测试验证的必要性
降维预测方法的核心思想是将时间序列预测问题转化为监督学习问题。这种转换过程中,特征矩阵的构建和预测结果的准确性至关重要。通过设计可验证的测试案例,我们可以:
- 确认预测器在不同场景下的数学正确性
- 验证特征工程的实现是否符合理论预期
- 确保外生变量处理的准确性
测试案例设计
我们设计了四组基础测试场景,覆盖了预测器的主要功能点:
基础案例组(无外生变量)
场景1a:窗口长度2,数据长度4的单变量序列
- 手动构建特征矩阵X和目标向量y
- 使用普通最小二乘法计算回归系数
- 对比预测器输出与手动计算结果
场景1b:窗口长度2,数据长度4的池化多序列
- 扩展至两条时间序列的合并场景
- 验证池化处理后的特征矩阵构造
- 检查多序列情况下的预测一致性
外生变量案例组
场景2a:含两列外生变量的单序列
- 测试并发外生变量处理(X与y同时间点)
- 测试滞后外生变量处理(X提前于y)
- 验证特征矩阵中外生变量的正确拼接
场景2b:含外生变量的池化多序列
- 组合多序列与外生变量的复杂场景
- 检查不同序列间外生变量的独立性保持
- 验证预测结果的分序列准确性
技术实现要点
在实施测试验证时,需要特别注意以下技术细节:
-
特征矩阵构造:确保滞后窗口的滑动计算正确,包括:
- 时间点对齐
- 边界处理
- 缺失值处理
-
回归计算验证:使用numpy手动实现最小二乘计算:
beta = np.linalg.inv(X.T @ X) @ X.T @ y -
预测对比:不仅比较点预测结果,还需检查:
- 预测区间(如果实现)
- 多步预测的累积误差
- 参数估计的标准误
扩展测试建议
除了基础验证外,建议增加以下测试维度:
- 数值稳定性测试:设计病态矩阵案例,验证算法鲁棒性
- 增量学习测试:检查partial_fit方法的正确实现
- 超参数验证:测试不同窗口长度下的表现一致性
- 异常处理:验证对不规则输入(如NaN、inf)的容错能力
总结
通过这套系统化的测试方案,我们可以全面验证sktime中降维预测器的数学正确性和实现可靠性。这种白盒测试方法不仅适用于开发阶段的验证,也可作为算法改进时的回归测试基础,确保预测器在各种应用场景下都能提供准确可靠的结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134