Truss项目v0.9.66版本发布:模型训练与WebSocket支持升级
Truss是一个开源的机器学习模型部署框架,旨在简化模型从开发到生产的整个生命周期。该项目由Baseten团队维护,提供了标准化的方式来打包、部署和扩展机器学习模型。最新发布的v0.9.66版本带来了一系列重要功能增强和优化,特别是在模型训练和实时通信支持方面。
核心功能更新
新增truss train子命令
本次版本引入了truss train子命令,为模型训练流程提供了标准化接口。这一功能允许开发者通过统一命令触发训练过程,而不必关心底层实现细节。同时,项目还提供了相应的API存根,为后续训练功能的完整实现奠定了基础。
WebSocket支持增强
在实时通信方面,v0.9.66版本扩展了对WebSocket协议的支持,特别是在chains(链式调用)场景中。这一改进使得基于Truss部署的模型能够处理实时数据流,为需要低延迟交互的应用场景(如聊天机器人、实时推荐系统等)提供了更好的支持。
内部缓存机制优化
新版本实现了internal_cache功能,支持节点级别的缓存。这一特性可以显著提升重复请求的响应速度,降低计算资源消耗。对于处理相同或相似输入的模型来说,缓存机制能够避免重复计算,提高整体系统效率。
开发者体验改进
本地开发支持增强
针对开发者的本地工作流程,v0.9.66版本做了多项优化。现在,项目能够更好地处理本地truss源代码的引用,同时重构了常见的Pydantic类型,使代码结构更加清晰。这些改进使得开发者在本地修改和测试Truss核心功能变得更加方便。
导入分类优化
在代码组织方面,新版本将truss相关的导入明确标记为第一方(first party)而非第三方(third party)依赖。这一变化有助于保持代码风格的一致性,并解决了部分静态分析工具可能产生的警告。
兼容性与构建支持
构建器模型支持
v0.9.66版本扩展了对builder模型的支持,特别是在chains场景中。这一改进使得开发者能够更灵活地组合和使用不同类型的模型,构建更复杂的机器学习流水线。
测试稳定性提升
项目团队修复了truss集成测试中的问题,确保了新功能的稳定性和可靠性。这些改进为开发者提供了更可靠的测试基础,有助于及早发现和解决潜在问题。
总结
Truss v0.9.66版本在模型训练流程标准化、实时通信支持和开发者体验等方面都做出了重要改进。这些更新不仅增强了框架的功能性,也提升了开发效率和使用体验。随着机器学习模型在生产环境中的部署需求日益增长,Truss项目通过持续迭代,正逐步成为一个更加成熟和完善的模型部署解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00