Recommender 项目安装与使用教程
2025-04-22 08:24:49作者:温玫谨Lighthearted
1. 项目的目录结构及介绍
Recommender 项目是一个推荐系统,旨在提供个性化的内容推荐。以下是项目的目录结构及其对应的介绍:
Recommender/
│
├── data/ # 存储数据集和预处理后的数据文件
├── docs/ # 项目文档
├── Recommender/ # 推荐系统的核心代码
│ ├── __init__.py
│ ├── data_loader.py # 数据加载和预处理模块
│ ├── models.py # 推荐算法模型
│ ├── trainer.py # 训练模块
│ └── utils.py # 工具函数模块
├── tests/ # 单元测试模块
├── requirements.txt # 项目依赖
├── setup.py # 项目安装脚本
└── README.md # 项目说明文件
data/:存放原始数据集和经过预处理的数据文件。docs/:存放项目的文档资料。Recommender/:包含项目的核心代码,如数据加载、模型定义、训练逻辑和工具函数。tests/:包含对项目代码进行单元测试的脚本。requirements.txt:列出项目运行所需的依赖库。setup.py:用于安装项目,使得项目可以作为Python模块使用。README.md:提供项目的简要介绍和安装使用说明。
2. 项目的启动文件介绍
Recommender 项目没有特定的启动文件,但可以通过运行 Recommender 目录下的 trainer.py 脚本来启动训练过程。以下是一个简单的启动示例:
from Recommender.trainer import Trainer
if __name__ == "__main__":
trainer = Trainer()
trainer.train()
这段代码会创建一个 Trainer 对象,并调用其 train 方法开始训练推荐模型。
3. 项目的配置文件介绍
Recommender 项目使用 config.json 文件作为配置文件,该文件通常位于项目根目录下。以下是配置文件的一个示例:
{
"data_path": "data/preprocessed_data.pkl",
"model_type": "NeuMF",
"batch_size": 256,
"epochs": 20,
"learning_rate": 0.001,
"embedding_size": 64,
"num_negative": 4
}
在这个配置文件中:
data_path指定了预处理后数据文件的路径。model_type定义了使用的推荐算法模型类型,例如 "NeuMF"。batch_size设置了模型训练时每个批次的样本数量。epochs表示模型训练的迭代次数。learning_rate是模型训练时的学习率。embedding_size定义了用户和物品的嵌入向量大小。num_negative指定了每个正样本对应的负样本数量。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882