cuCollections:GPU加速的并发数据结构库
2024-09-19 10:16:14作者:董斯意
项目介绍
cuCollections(简称cuco)是一个开源的、仅包含头文件的库,专注于提供GPU加速的并发数据结构。类似于Thrust和CUB为GPU提供STL风格的算法和原语,cuCollections提供了STL风格的并发数据结构。尽管cuCollections不是STL数据结构的直接替代品,但它提供了功能相似的数据结构,专门为GPU的高效使用而设计。
项目技术分析
技术栈
- 编程语言:C++17
- 编译器:
nvcc 11.5+ - 硬件要求:Volta+架构(Pascal部分支持)
- 依赖库:CUDA C++ Core Libraries (CCCL)
核心功能
cuCollections目前主要提供了以下几种并发数据结构:
static_set:固定大小的容器,存储唯一元素,无特定顺序。static_map:固定大小的哈希表,使用开放寻址和线性探测。static_multimap:支持存储等价键的固定大小哈希表,默认使用双重哈希,支持切换到线性探测。dynamic_map:通过链接多个static_map来提供一个可以随着键值对插入而增长的哈希表。
开发状态
cuCollections目前仍处于活跃开发阶段,用户应预期会有重大变更和重构。
项目及技术应用场景
cuCollections适用于需要高性能并发数据结构的应用场景,特别是在GPU加速的计算环境中。以下是一些典型的应用场景:
- 高性能计算:在科学计算、机器学习等领域,需要处理大量数据并进行复杂的计算操作。
- 大数据处理:在数据分析、数据挖掘等场景中,需要高效地处理和存储大规模数据集。
- 实时系统:在需要实时处理和响应的应用中,如金融交易系统、实时监控系统等。
项目特点
1. GPU加速
cuCollections充分利用GPU的并行计算能力,提供了高效的并发数据结构,显著提升了数据处理速度。
2. 仅包含头文件
作为一个仅包含头文件的库,cuCollections易于集成到现有项目中,无需复杂的构建过程。
3. 兼容性强
cuCollections兼容C++17标准,并且依赖于CUDA C++ Core Libraries,确保了在不同环境下的稳定性和兼容性。
4. 丰富的示例和文档
项目提供了丰富的示例代码和详细的Doxygen文档,帮助用户快速上手并理解如何使用这些并发数据结构。
5. 灵活的集成方式
通过CMake和CMake Package Manager (CPM),cuCollections可以轻松集成到CMake项目中,简化了依赖管理和构建过程。
总结
cuCollections是一个强大的工具,特别适合需要在GPU上进行高性能并发数据处理的应用。无论你是从事科学计算、大数据分析,还是实时系统开发,cuCollections都能为你提供高效、可靠的数据结构支持。立即访问GitHub仓库,开始你的高性能计算之旅吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
314
2.73 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
245
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
Ascend Extension for PyTorch
Python
154
178
暂无简介
Dart
605
136
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
239
84
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.01 K
React Native鸿蒙化仓库
JavaScript
238
310