Automatic项目在Ubuntu 22.04下AMD GPU(RX 7900 XT)无法使用的解决方案
2025-06-04 19:43:09作者:戚魁泉Nursing
问题背景
在Ubuntu 22.04操作系统上使用AMD RX 7900 XT显卡运行Automatic项目时,系统虽然能够检测到GPU并安装ROCm驱动,但实际运行过程中却未能正确调用GPU进行计算,而是回退到CPU模式。这导致模型加载失败,并出现维度不匹配的错误提示。
问题分析
通过日志分析,可以确认以下几个关键点:
- 系统环境检测显示ROCm 6.1已安装,并识别到了gfx1100(Navi3x架构)设备
- 虽然PyTorch配置了ROCm支持,但
torch.cuda.is_available()
返回False - 模型加载过程中出现维度不匹配错误,这实际上是GPU未被正确启用的间接表现
根本原因
该问题的根本原因在于用户权限配置不当,导致系统无法正确访问GPU硬件资源。具体表现为:
- 当前用户未加入必要的系统组(video和render)
- ROCm驱动安装后,相关设备文件的访问权限未正确配置
- PyTorch的ROCm支持未正确初始化
解决方案
步骤一:检查并添加用户组
首先需要确保当前用户已加入必要的系统组:
sudo usermod -a -G render,video <你的用户名>
执行此命令后需要重新登录或重启系统使更改生效。
步骤二:验证ROCm环境
重启后,通过以下命令验证ROCm环境:
rocminfo
rocm-smi
这两个命令应能正常显示GPU信息,无权限错误。
步骤三:创建测试环境验证PyTorch
建议创建一个干净的Python虚拟环境进行测试:
python3 -m venv venv
source venv/bin/activate
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0
python3 -c "import torch; print(torch.cuda.is_available())"
如果输出为True,则说明PyTorch已正确识别GPU。
步骤四:重新配置Automatic项目环境
确认基础环境正常后,可重新配置项目环境:
cd automatic
rm -rf venv sdnext.log
python3 -m venv venv
source venv/bin/activate
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0
./webui.sh --skip-torch
注意事项
- 确保使用与ROCm版本匹配的PyTorch安装命令
- 不同版本的ROCm可能需要调整PyTorch安装源
- 如果问题仍然存在,可尝试完全卸载并重新安装ROCm驱动
- 对于SDXL模型,确保下载的是完整版模型文件(通常大小在6-7GB左右)
通过以上步骤,大多数情况下可以解决AMD GPU在Ubuntu系统下无法被Automatic项目正确识别和使用的问题。
登录后查看全文
热门项目推荐
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript038RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0410arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript040GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。03CS-Books
🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~012openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0145
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp博客页面工作坊中的断言方法优化建议6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp论坛排行榜项目中的错误日志规范要求8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp课程视频测验中的Tab键导航问题解析
最新内容推荐
Visual-RFT项目中模型路径差异的技术解析 Microcks在OpenShift上部署Keycloak PostgreSQL的权限问题解析 Beyla项目中的HTTP2连接检测问题解析 RaspberryMatic项目中HmIP-BWTH温控器假期模式设置问题分析 Lets-Plot 库中条形图标签在坐标轴反转时的定位问题解析 BedrockConnect项目版本兼容性问题解析与解决方案 LiquidJS 10.21.0版本新增数组过滤功能解析 Mink项目中Selenium驱动切换iframe的兼容性问题分析 Lichess移动端盲棋模式字符串优化解析 sbctl验证功能JSON输出问题解析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
559
410

React Native鸿蒙化仓库
C++
124
207

openGauss kernel ~ openGauss is an open source relational database management system
C++
74
145

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
426
38

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
693
91

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
253

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
298
1.03 K

Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
20
4

🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~
91
11