PyTorch Metric Learning中组合损失函数时的归一化处理技巧
2025-06-04 15:47:35作者:谭伦延
在深度学习领域,度量学习(Metric Learning)是一种重要的技术,它通过学习样本间的距离或相似度来构建有效的特征表示。PyTorch Metric Learning库为这一任务提供了丰富的工具集,但在实际应用中,当组合使用多种损失函数和挖掘器时,归一化处理可能会带来一些困惑。
归一化在度量学习中的作用
归一化是将特征向量转换为单位长度的过程,这在度量学习中尤为重要,原因有三:
- 确保不同样本间的距离或相似度计算具有可比性
- 防止某些维度主导距离计算
- 使优化过程更加稳定
组合损失函数的常见场景
在实际应用中,研究人员经常需要组合不同的损失函数来获得更好的性能。例如:
- 同时使用基于余弦相似度和欧氏距离的损失
- 结合难样本挖掘策略
- 使用多种距离度量方式
归一化处理的正确配置
PyTorch Metric Learning库中的距离计算默认会进行归一化处理,这在某些情况下可能与用户预期不符。特别是当模型本身已经包含归一化层时,双重归一化可能导致不良效果。
解决方案
要正确配置归一化行为,可以通过显式设置normalize_embeddings参数:
from pytorch_metric_learning import losses, miners, distances
# 创建不进行归一化的距离计算器
custom_distance = distances.LpDistance(normalize_embeddings=False)
# 应用于损失函数
loss_fn = losses.TripletMarginLoss(distance=custom_distance)
# 应用于挖掘器
miner_fn = miners.BatchEasyHardMiner(distance=custom_distance)
实践建议
- 一致性原则:确保损失函数和挖掘器使用相同的归一化设置
- 性能监控:训练过程中密切关注模型表现,归一化选择可能显著影响结果
- 模型架构考量:如果模型本身包含归一化层,通常建议关闭库中的二次归一化
- 混合距离度量:当组合不同距离度量时,确保各自归一化设置符合预期
总结
正确理解和配置归一化处理是成功应用PyTorch Metric Learning库的关键。通过合理设置normalize_embeddings参数,开发者可以灵活控制特征表示的处理方式,从而优化模型性能。特别是在组合多种损失函数和挖掘策略的复杂场景下,明确的归一化配置能够避免潜在问题,确保模型训练的稳定性和有效性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355