Wasmi引擎内存优化:减少函数编译产物的内存占用
2025-07-09 00:22:05作者:尤辰城Agatha
在WebAssembly运行时环境中,内存效率一直是性能优化的关键点之一。本文深入分析wasmi引擎中函数编译产物的内存使用情况,并提出有效的优化方案,显著降低了引擎运行时的内存消耗。
问题背景
wasmi引擎在编译WebAssembly模块时,会将所有函数的编译产物存储在内存中。对于采用延迟编译策略的情况,引擎还需要保存每个函数进行延迟编译所需的全部信息。当前实现中存在两个主要的内存使用问题:
- 未编译函数实体(UncompiledFuncEntity) 存储了冗余信息,包括重复的函数索引和庞大的WasmFeatures结构
- 已编译函数实体(CompiledFunctionEntity) 使用Box<[T]>存储指令和常量,导致额外内存开销
优化方案详解
未编译函数实体的优化
原始实现中,UncompiledFuncEntity存储了完整的FuncToValidate结构,其中包含多个冗余字段:
struct UncompiledFuncEntity {
func_to_validate: FuncToValidate<...> // 包含冗余func_idx和WasmFeatures
}
优化后的结构消除了这些冗余:
struct UncompiledFuncEntity {
func_index: u32, // 单独存储函数索引
bytes: SmallByteSlice, // 优化后的字节切片存储
module: ModuleHeader, // 共享模块头信息
validate: Option<ValidatorResources> // 精简后的验证资源
}
关键优化点包括:
- 将函数索引从FuncToValidate中提取出来单独存储
- 将WasmFeatures提升到CodeMap级别共享,避免每个函数重复存储
- 使用自定义的SmallByteSlice优化小字节序列的存储
已编译函数实体的优化
原始实现使用Box<[T]>存储指令和常量:
struct CompiledFunctionEntity {
instrs: Box<[Instruction]>,
consts: Box<[Const16]>,
}
优化方案改为使用原始指针配合长度信息:
struct CompiledFunctionEntity {
instrs_ptr: *const Instruction,
instrs_len: u16,
consts_ptr: *const Const16,
consts_len: u16,
}
这种改变不仅减少了结构体大小,还使len_cells方法的执行更加高效。
内存优化效果
经过上述优化,内存使用情况得到显著改善:
- UncompiledFuncEntity大小从88字节降至48字节
- InternalFuncEntity大小从88字节降至48字节
- 每处理1000个函数可节省约40KB内存
对于函数数量庞大的WebAssembly模块,这种优化将带来可观的内存节省,特别是在对抗恶意构造的包含大量空函数的Wasm模块时,能有效缓解内存压力。
技术实现细节
优化过程中需要特别注意:
- 内存安全:使用原始指针时需要确保引用的数据生命周期足够长
- 对齐考虑:结构体字段重新排列以最小化填充字节
- 兼容性:保持与现有wasmparser版本的兼容性
SmallByteSlice的实现采用了智能的small buffer优化技术,对小尺寸数据直接内联存储,对大尺寸数据才使用堆分配,这种技术在字符串处理等场景中已被证明能有效提升性能。
总结
通过对wasmi引擎内部数据结构的精细优化,我们显著降低了函数编译产物的内存占用。这种优化对于资源受限的环境尤为重要,能够使wasmi引擎在处理大型WebAssembly模块时更加高效稳定。未来还可以考虑进一步优化SmallByteSlice的实现,通过unsafe技术减少其内存占用,但需要在安全性和性能之间做出合理权衡。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1