开源项目启动与配置教程
2025-04-24 14:57:56作者:温艾琴Wonderful
一、项目目录结构及介绍
开源项目regexr-cn的目录结构如下:
regexr-cn/
├── assets/ # 存放静态资源,如CSS、JS、图片等
├── dist/ # 编译后的文件,包含HTML、CSS、JS等
├── src/ # 源代码目录
│ ├── css/ # CSS源文件
│ ├── img/ # 图片资源
│ ├── js/ # JavaScript源文件
│ └── index.html # 项目主页面
├── .gitignore # 指定git忽略的文件和目录
├── .package-lock.json # npm依赖项的锁定文件
├── .travis.yml # Travis CI配置文件
├── package.json # npm项目配置文件
└── README.md # 项目说明文件
目录介绍
assets/:存放项目的静态资源,如CSS样式表、JavaScript脚本和图片等。dist/:项目的编译输出目录,包含了最终部署时需要的所有文件。src/:存放项目的源代码,包括HTML页面、CSS样式和JavaScript脚本等。.gitignore:定义了在执行git操作时应忽略的文件和目录,以避免将不必要的文件提交到仓库中。.package-lock.json:锁定项目的依赖项,确保在不同环境中安装的依赖项版本保持一致。.travis.yml:配置Travis CI自动化的文件,用于自动化测试和部署等。package.json:定义了项目的依赖关系和脚本,用于管理和运行项目。README.md:项目的说明文件,包含了项目描述、安装指南和使用说明等。
二、项目的启动文件介绍
项目的启动文件位于src/目录下的index.html。这是项目的主页面,通常包含以下内容:
- 页面的基本结构,如
<!DOCTYPE html>声明、<html>标签、<head>头部信息和<body>主体部分。 - 引入外部CSS样式表和JavaScript脚本。
- HTML内容,如页面标题、导航栏、主要内容和页脚等。
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<title>Regexr 中文版</title>
<link rel="stylesheet" href="css/style.css">
</head>
<body>
<!-- 页面内容 -->
<script src="js/app.js"></script>
</body>
</html>
三、项目的配置文件介绍
项目的配置文件主要是package.json。该文件定义了项目的依赖项、脚本和元数据。以下是一个基本的package.json文件结构:
{
"name": "regexr-cn",
"version": "1.0.0",
"description": "Regexr 中文版",
"main": "index.js",
"scripts": {
"start": "webpack serve --open",
"build": "webpack --mode production"
},
"keywords": [
"regexr",
"正则表达式",
"工具"
],
"dependencies": {
"webpack": "^5.0.0",
"webpack-cli": "^4.0.0"
},
"devDependencies": {
"webpack-dev-server": "^3.11.0"
}
}
配置文件内容解释
name:项目的名称。version:项目的版本号。description:项目的简短描述。main:指定了项目的入口文件。scripts:定义了可以运行的脚本命令,例如启动开发服务器(start)和构建生产版本(build)。keywords:项目的关键词,有助于用户在npm上找到该项目。dependencies:项目在生产环境中需要的依赖项。devDependencies:项目在开发环境中需要的依赖项。
通过运行npm start可以启动开发服务器,运行npm run build可以构建项目的生产版本。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
194
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143