Motion-Diffusion-Model项目中评估数据集归一化问题的分析与修复
2025-06-24 18:45:37作者:江焘钦
问题背景
在Motion-Diffusion-Model项目中,评估生成运动数据质量时发现了一个潜在的数据归一化问题。该项目使用扩散模型生成人体运动序列,并通过多个指标评估生成质量。在评估过程中,数据预处理的一致性对结果准确性至关重要。
问题描述
项目中有两个关键的数据集类:
CompMDMGeneratedDataset:在获取数据项时会执行运动数据的重归一化操作MMGeneratedDataset:直接索引CompMDMGeneratedDataset中的mm_generated_motion数组,跳过了重归一化步骤
这种不一致的处理方式可能导致评估指标计算时数据分布不一致,影响评估结果的准确性。
技术分析
运动数据的归一化是预处理中的重要步骤,它确保不同特征在相同尺度上进行比较。在Motion-Diffusion-Model中:
- 原始运动数据通常经过标准化处理(减去均值,除以标准差)
- 生成的运动数据需要反向转换(反归一化)才能与原始数据在同一空间比较
- 评估指标如FID、多样性等对数据分布非常敏感
CompMDMGeneratedDataset正确实现了这一流程,而MMGeneratedDataset由于直接访问数组绕过了这一步骤,可能导致评估偏差。
解决方案验证
开发者进行了对比实验,使用同一模型检查修复前后的评估结果差异:
原始设置评估结果:
- FID: 0.5279
- 多样性: 9.9844
- 多模态性: 2.2622
修复后评估结果:
- FID: 0.5279(相同)
- 多样性: 9.9844(相同)
- 多模态性: 2.2070(略有下降)
结果表明,归一化修复对大多数评估指标影响不大,但对多模态性指标有轻微影响,说明数据一致性对某些特定指标更为敏感。
修复方案
解决方案是在MMGeneratedDataset中同样应用重归一化处理,确保数据流的一致性。具体实现包括:
- 继承
CompMDMGeneratedDataset的重归一化方法 - 在数据访问时应用相同的归一化参数
- 保持与原始数据处理流程的一致性
技术启示
这个问题的发现和解决过程展示了几个重要技术点:
- 数据一致性:在机器学习流水线中,保持训练、生成和评估阶段的数据预处理一致性至关重要
- 评估可靠性:即使是细微的数据处理差异也可能影响评估结果,特别是对分布敏感的指标
- 代码复用:通过合理的类设计可以避免这类问题,减少重复代码带来的不一致风险
总结
Motion-Diffusion-Model项目中的这个归一化问题虽然对主要评估指标影响不大,但修复后确保了评估流程的严谨性。这类问题的及时发现和修复有助于提高研究结果的可信度和可复现性,是机器学习项目开发中值得注意的细节。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
122
149
暂无简介
Dart
579
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
183
仓颉编译器源码及 cjdb 调试工具。
C++
121
330
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.18 K