ghw项目新增NUMA架构下HugePages信息支持
在Linux系统的性能优化领域,NUMA架构和HugePages是两个至关重要的技术点。ghw作为一款硬件发现和检查工具,近期在其内存模块中新增了对HugePages信息的支持,这为系统管理员和开发者提供了更全面的硬件信息获取能力。
NUMA架构在现代多核处理器系统中十分常见,它将内存划分为不同的节点,每个节点与特定的CPU核心相关联。这种设计虽然提高了内存访问效率,但也带来了更复杂的内存管理需求。而HugePages作为Linux内核提供的大页内存机制,能够显著减少TLB(转换检测缓冲区)缺失,提升内存密集型应用的性能。
ghw项目原本就具备获取NUMA节点内存信息的能力,包括常规内存的总量、可用量等数据。但在实际应用中,特别是在高性能计算、数据库等场景下,HugePages的配置和使用情况同样至关重要。新功能扩展了AreaForNode结构体,新增了以下HugePages相关信息字段:
- HugePagesTotal:系统配置的HugePages总数
- HugePagesFree:当前可用的HugePages数量
- HugePageSize:当前设置的HugePage大小
这些信息的加入使得开发者能够更全面地了解系统的内存状况。例如,在Kubernetes环境中调度内存敏感型工作负载时,调度器可以结合常规内存和HugePages信息做出更合理的决策。对于数据库管理员来说,这些数据可以帮助他们更好地配置Oracle、PostgreSQL等数据库的大页内存参数。
从实现角度看,ghw通过解析Linux系统下的相关文件来获取这些信息。对于HugePages,主要读取的是系统中的大页内存信息文件,这些文件通常包含了系统配置的各种大小的大页内存的统计信息。
这一增强功能使得ghw在系统监控、资源管理和性能调优等场景下变得更加实用。开发者现在可以通过简单的API调用,一站式获取包括常规内存和大页内存在内的完整内存拓扑信息,而无需自行解析多个系统文件或调用不同工具。
对于需要精细控制内存使用的应用场景,这一改进提供了更丰富的数据支持。系统管理员可以基于这些信息,更准确地评估系统资源使用情况,做出更合理的资源配置决策。同时,这也为自动化工具提供了更全面的硬件信息获取能力,使得资源管理和调度更加智能化。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00