Scaffold-ETH 2 中 useScaffoldEventHistory 钩子的正确使用方式
在基于 Scaffold-ETH 2 框架开发 DApp 时,开发者可能会遇到一个常见问题:当在同一个页面多次使用 useScaffoldEventHistory 钩子查询不同过滤条件的事件时,数据会出现相互覆盖的情况。本文将深入分析这个问题产生的原因,并提供解决方案。
问题现象
当开发者在同一页面组件中多次调用 useScaffoldEventHistory 钩子,并传入不同的过滤条件时,预期应该返回各自独立的查询结果。然而实际表现却是后调用的钩子会覆盖前一个钩子的数据,导致两个查询返回相同的结果。
问题根源
经过分析,这个问题源于 React Query 的缓存机制。useScaffoldEventHistory 内部使用了 React Query 来管理数据请求和缓存,而默认情况下,React Query 会根据查询键(queryKey)来识别和缓存查询结果。
在 Scaffold-ETH 2 的实现中,查询键的生成可能没有充分考虑所有变量参数,特别是当传入不同的过滤条件时,生成的查询键可能相同,导致 React Query 认为这是同一个查询,从而返回缓存的结果而非重新获取数据。
解决方案
解决这个问题的关键在于确保每次调用 useScaffoldEventHistory 时,传入不同过滤条件都能生成唯一的查询键。可以通过以下两种方式实现:
-
为每个查询实例提供唯一标识:在调用钩子时,添加一个唯一的标识符作为查询键的一部分。
-
修改钩子实现:确保钩子内部能够正确处理过滤条件的变化,将其纳入查询键的生成逻辑中。
在 Scaffold-ETH 2 的最新更新中,已经修复了这个问题。开发者只需确保使用最新版本的框架,或者在自定义实现中正确处理过滤条件的变化即可。
最佳实践
为了避免类似问题,在使用 useScaffoldEventHistory 时,建议遵循以下最佳实践:
- 确保每次调用时传入的过滤条件对象是不同的引用
- 考虑为每个查询实例添加唯一标识符
- 在组件中使用不同的变量名存储查询结果
- 检查 React Query 的缓存行为是否符合预期
总结
理解 React Query 的缓存机制对于正确使用 Scaffold-ETH 2 的钩子非常重要。通过确保查询键的唯一性,开发者可以避免数据覆盖的问题,实现复杂的事件查询场景。随着 Scaffold-ETH 2 框架的持续更新,这类问题会得到更好的内置处理,但掌握其背后的原理仍然对开发者大有裨益。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00