目标说话人提取与验证:多说话者语音处理新境界
2024-06-13 07:55:38作者:余洋婵Anita
在这个开源项目中,开发者实现了一种高效的方法来从多说话者的混合声音中提取并验证目标说话人的声音特征。基于深度学习的模型,该项目实现了单一通道的语音分离,并优化了目标说话人提取神经网络的性能。
项目介绍
Target Speaker Extraction and Verification for Multi-talker Speech 是一个专注于在多说话者环境下的目标说话人声学信号处理的工具包。这个项目不仅包含了目标说话人语音的提取功能,还提供了用于多说话者语音验证的关键组件。利用该代码库,你可以训练一个小型网络,从不同目标说话者的语料中学习其独特的声音特性。
技术分析
项目的核心是基于深度学习的模型,用于从复杂音频环境中精确地识别和提取目标说话人的声音。它采用了约束的utterance-level permutation invariant训练(cPLDA)以及网格LSTM,以实现单声道语音的高效分离。此外,通过损失函数的创新设计——幅度和时间谱近似损失,进一步提高了模型的性能和准确性。
应用场景
这个项目适用于多种实际应用:
- 语音增强 - 在嘈杂环境下提升目标说话人的语音质量。
- 智能语音助手 - 去除背景噪声,让AI系统更准确理解用户的指令。
- 电话会议 - 提取特定参与者的语音,使得其他参与者可以专注听取。
- 安全监控 - 在多个人讲话时,提取特定个体的声音进行分析。
项目特点
- 高度可定制 - 用户可以选择使用i-vector或x-vector网络替代默认的小型网络来学习目标说话人的特征。
- 数据生成 - 提供脚本生成实验数据,便于快速进行实验设置和评估。
- 端到端流程 - 包含数据预处理、模型训练和运行时推断的完整流程,易于上手。
- 兼容性良好 - 支持Python 2.7和TensorFlow 1.12,方便大部分开发环境使用。
如果你对多说话者的语音处理感兴趣,或者正在寻找提高你的语音识别系统的解决方案,这个项目绝对值得一试。请引用相关论文以支持作者的工作:
@inproceedings{xu2018single,
title={Single channel speech separation with constrained utterance level permutation invariant training using grid lstm},
author={Xu, Chenglin and Rao, Wei and Xiao, Xiong and Chng, Eng Siong and Li, Haizhou},
booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={6--10},
year={2018}
}
@inproceedings{xu2019optimization,
title={Optimization of speaker extraction neural network with magnitude and temporal spectrum approximation loss},
author={Xu, Chenglin and Rao, Wei and Chng, Eng Siong and Li, Haizhou},
booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={6990--6994},
year={2019}
}
@inproceedings{rao2019target,
title={Target speaker extraction for multi-talker speaker verification},
author={Rao, Wei and Xu, Chenglin and Chng, Eng Siong and Li, Haizhou},
booktitle={Proc. Of INTERSPEECH},
pages={1273--1277},
year={2019}
}
欢迎加入这个社区,探索目标说话人提取和验证的无限可能!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873