探索智能路由:基于注意力机制的旅行商问题与车辆路径问题求解
2024-09-17 23:03:33作者:伍希望
项目介绍
在现代物流、交通规划和计算机科学领域,旅行商问题(TSP)和车辆路径问题(VRP)一直是研究的热点。这些问题不仅具有理论上的挑战性,而且在实际应用中具有广泛的价值。为了更高效地解决这些问题,Wouter Kool 等人开发了一个基于注意力机制的深度学习模型,用于求解TSP、VRP、定向问题(OP)以及(随机)奖赏收集TSP(PCTSP)。该项目在ICLR 2019上发表,并获得了广泛的关注。

项目技术分析
核心技术
该项目采用了注意力机制和强化学习(REINFORCE)相结合的方法,通过贪婪回滚基线(greedy rollout baseline)进行训练。模型能够自动学习如何构建有效的路径,而不需要手工设计的启发式算法。
技术栈
- 编程语言: Python 3.8及以上
- 深度学习框架: PyTorch 1.7及以上
- 依赖库: NumPy, SciPy, tqdm, tensorboard_logger, Matplotlib(可选)
训练与评估
项目提供了详细的训练和评估脚本,支持多GPU训练、模型加载与恢复、以及多种解码策略(如贪婪解码、采样解码和波束搜索)。此外,项目还包括了多种基准算法的实现,方便用户进行性能对比。
项目及技术应用场景
应用场景
- 物流与配送: 优化车辆路径,减少运输成本。
- 交通规划: 智能调度交通信号,优化城市交通流量。
- 计算机视觉: 图像中的物体路径规划。
- 制造业: 生产线上的物料搬运路径优化。
实际案例
- 物流公司: 通过优化配送路径,减少燃油消耗和司机工作时间。
- 电商平台: 提高配送效率,缩短客户等待时间。
- 城市交通管理: 通过智能调度,减少交通拥堵。
项目特点
1. 高效性
基于注意力机制的模型能够快速学习并生成高效的路径解决方案,尤其在大规模问题上表现出色。
2. 灵活性
支持多种问题的求解,包括TSP、VRP、OP和PCTSP,用户可以根据实际需求选择合适的问题进行求解。
3. 易用性
项目提供了详细的文档和示例代码,用户可以轻松上手。支持多GPU训练和模型加载,方便用户进行大规模实验和生产部署。
4. 开源与社区支持
作为一个开源项目,用户可以自由地查看、修改和贡献代码。社区中已有多个相关的实现,用户可以参考这些实现进行进一步的开发和优化。
结语
“Attention, Learn to Solve Routing Problems!” 项目不仅在学术界引起了广泛的关注,也在实际应用中展现了巨大的潜力。无论你是研究者还是开发者,这个项目都值得你深入探索和使用。快来加入我们,一起探索智能路由的无限可能吧!
参考文献:
@inproceedings{
kool2018attention,
title={Attention, Learn to Solve Routing Problems!},
author={Wouter Kool and Herke van Hoof and Max Welling},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=ByxBFsRqYm},
}
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C079
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
463
3.45 K
Ascend Extension for PyTorch
Python
270
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
187
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692