RLCard项目中麻将游戏状态处理问题的技术分析
2025-06-26 06:09:42作者:宣海椒Queenly
背景介绍
RLCard是一个开源的强化学习卡牌游戏环境库,它为研究人员提供了多种卡牌游戏的标准化接口,方便进行强化学习算法的开发和测试。其中,麻将作为一款复杂的传统卡牌游戏,其实现逻辑尤为复杂。
问题发现
在RLCard项目的麻将游戏实现中,开发者发现了一个有趣的现象:当改变玩家手牌state['current_hand']的顺序时,会导致eval_step函数的预测结果发生变化。这种现象显然不符合预期,因为麻将游戏的决策逻辑理论上不应该依赖于手牌的排列顺序。
问题根源分析
经过深入排查,发现问题出在状态提取函数mahjong extract_state中。该函数生成的两个关键变量存在不一致:
raw_legal_actions:直接反映了玩家手牌的实际列表legal_actions:则是玩家手牌的唯一值列表(去重后的结果)
这种不一致导致后续的处理逻辑出现了偏差。当手牌顺序变化时,虽然手牌内容相同,但由于raw_legal_actions保留了原始顺序,而legal_actions做了去重处理,两者之间的对应关系可能会发生变化,进而影响到最终的决策评估。
技术影响
这种不一致性会带来几个潜在问题:
- 决策不稳定:相同的手牌内容,不同的排列顺序可能导致不同的AI决策
- 训练效果下降:强化学习模型可能会学习到与手牌顺序相关的虚假特征
- 评估结果不可靠:模型性能评估可能因为手牌顺序的随机性而产生波动
解决方案建议
针对这个问题,可以考虑以下几种解决方案:
- 统一处理方式:确保
raw_legal_actions和legal_actions对手牌的处理逻辑一致,要么都保留原始顺序,要么都进行去重排序 - 标准化手牌表示:在处理前对手牌进行标准化排序,消除顺序的影响
- 修改状态表示:重新设计状态表示方式,使其不依赖于手牌顺序
最佳实践
在实现类似卡牌游戏的状态处理时,建议遵循以下原则:
- 状态一致性:确保同一游戏状态的不同表示方式在语义上完全等价
- 顺序无关性:对于集合类数据(如手牌),应该设计为顺序无关的表示
- 明确转换规则:如果需要在不同表示间转换,应该有明确且一致的转换规则
总结
这个案例展示了在游戏AI开发中,状态表示的一致性对系统行为的重要影响。即使是看似微小的实现细节差异,也可能导致系统整体行为的不可预测变化。在开发类似系统时,需要特别注意状态提取和处理逻辑的一致性,确保系统的稳定性和可靠性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143