Narwhals项目v1.38.0版本发布:性能优化与功能增强
Narwhals是一个专注于数据处理的Python库,它提供了高效、灵活的数据操作接口,特别适合处理大规模数据集。该项目通过优化底层实现和提供丰富的API,使得数据分析工作更加便捷高效。最新发布的v1.38.0版本带来了一系列性能改进和功能增强,进一步提升了库的实用性和效率。
性能优化亮点
本次版本在性能方面做了多处改进,其中最值得注意的是对模块导入机制的优化。开发团队移除了narwhals/__init__.py中对stable的直接导出,改为要求用户显式导入narwhals.stable。这种设计变更不仅提高了代码的清晰度,还减少了不必要的内存占用。
另一个重要的性能优化是避免了模块级别的importlib.util.find_spec调用。这种延迟加载策略可以显著减少库的启动时间,特别是在大型项目中导入多个模块时效果更为明显。
此外,团队还对_DelayedCategories进行了重构,将其通用化为_DeferredIterable。这一改动不仅优化了特定场景下的性能,还提高了代码的可维护性和扩展性。
新增功能与改进
v1.38.0版本新增了dt.truncate功能,为日期时间处理提供了更多灵活性。这个功能允许用户按照指定的时间单位截断日期时间对象,例如将时间戳截断到小时或分钟级别,这在时间序列分析中非常有用。
在API设计方面,团队采用了_with_callable模式来处理narwhals表达式命名空间,这种设计使得API更加一致且易于扩展。同时,移除了Implementation._alias而采用非自动值的方式,进一步简化了内部实现。
问题修复与稳定性提升
本次发布修复了多个问题,包括处理了is_sparse的弃用警告,确保在测试套件中不会产生不必要的警告信息。团队还对cudf集成进行了修复,并解决了pandas弃用警告相关的问题,提高了与其他数据处理库的兼容性。
代码质量与测试改进
在代码质量方面,团队采用了更多的ruff复杂度规则,帮助保持代码的高标准和一致性。测试方面,重新启用了tubular测试,并修复了TPCH测试数据生成在CI中的问题,确保了测试覆盖率和可靠性。
团队还引入了Compliant*.to_narwhals方法,提供了更灵活的数据转换方式。这些改进不仅提升了库的功能性,也增强了与其他数据处理生态系统的互操作性。
文档与开发者体验
文档方面,团队采用了Google风格的admonition格式,使文档更加清晰易读。同时,新增了_translate相关文档,并修正了join_asof中对排序要求的说明,帮助开发者更准确地使用这些功能。
在开发工具链方面,项目从pdm切换到了uv作为tea-tasting下游测试的工具,这可能会带来构建和测试效率的提升。
总结
Narwhals v1.38.0版本通过多方面的优化和改进,进一步巩固了其作为高效数据处理工具的地位。从性能优化到功能增强,从问题修复到文档完善,这个版本体现了开发团队对代码质量和用户体验的持续关注。对于数据科学家和工程师来说,升级到这个版本将带来更流畅的数据处理体验和更高的效率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00