Narwhals项目v1.38.0版本发布:性能优化与功能增强
Narwhals是一个专注于数据处理的Python库,它提供了高效、灵活的数据操作接口,特别适合处理大规模数据集。该项目通过优化底层实现和提供丰富的API,使得数据分析工作更加便捷高效。最新发布的v1.38.0版本带来了一系列性能改进和功能增强,进一步提升了库的实用性和效率。
性能优化亮点
本次版本在性能方面做了多处改进,其中最值得注意的是对模块导入机制的优化。开发团队移除了narwhals/__init__.py
中对stable
的直接导出,改为要求用户显式导入narwhals.stable
。这种设计变更不仅提高了代码的清晰度,还减少了不必要的内存占用。
另一个重要的性能优化是避免了模块级别的importlib.util.find_spec
调用。这种延迟加载策略可以显著减少库的启动时间,特别是在大型项目中导入多个模块时效果更为明显。
此外,团队还对_DelayedCategories
进行了重构,将其通用化为_DeferredIterable
。这一改动不仅优化了特定场景下的性能,还提高了代码的可维护性和扩展性。
新增功能与改进
v1.38.0版本新增了dt.truncate
功能,为日期时间处理提供了更多灵活性。这个功能允许用户按照指定的时间单位截断日期时间对象,例如将时间戳截断到小时或分钟级别,这在时间序列分析中非常有用。
在API设计方面,团队采用了_with_callable
模式来处理narwhals表达式命名空间,这种设计使得API更加一致且易于扩展。同时,移除了Implementation._alias
而采用非自动值的方式,进一步简化了内部实现。
问题修复与稳定性提升
本次发布修复了多个问题,包括处理了is_sparse
的弃用警告,确保在测试套件中不会产生不必要的警告信息。团队还对cudf集成进行了修复,并解决了pandas弃用警告相关的问题,提高了与其他数据处理库的兼容性。
代码质量与测试改进
在代码质量方面,团队采用了更多的ruff
复杂度规则,帮助保持代码的高标准和一致性。测试方面,重新启用了tubular测试,并修复了TPCH测试数据生成在CI中的问题,确保了测试覆盖率和可靠性。
团队还引入了Compliant*.to_narwhals
方法,提供了更灵活的数据转换方式。这些改进不仅提升了库的功能性,也增强了与其他数据处理生态系统的互操作性。
文档与开发者体验
文档方面,团队采用了Google风格的admonition格式,使文档更加清晰易读。同时,新增了_translate
相关文档,并修正了join_asof
中对排序要求的说明,帮助开发者更准确地使用这些功能。
在开发工具链方面,项目从pdm切换到了uv作为tea-tasting下游测试的工具,这可能会带来构建和测试效率的提升。
总结
Narwhals v1.38.0版本通过多方面的优化和改进,进一步巩固了其作为高效数据处理工具的地位。从性能优化到功能增强,从问题修复到文档完善,这个版本体现了开发团队对代码质量和用户体验的持续关注。对于数据科学家和工程师来说,升级到这个版本将带来更流畅的数据处理体验和更高的效率。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









