探索实时全文搜索的威力:Elasticsearch

在接下来的三十分钟内,您将学习如何利用Elasticsearch为您的项目、产品或网站赋予强大的搜索体验。
为何选择Elasticsearch?
对于任何超越基础功能的网站,访客和用户都期待能够通过内容(如博客文章、食谱、商品、评论等)进行搜索。虽然您可以选择使用Google自定义搜索以提供这种服务,并避免运行自己的搜索服务器集群,但往往客户需要对搜索体验有更多控制权——这就是您阅读本文的原因。
为什么不是其他具备全文搜索功能的XYZ数据库?
简单来说,就是"选用最适合工具"。我们过去曾使用MongoDB的全文搜索,甚至为此编写了教程,也尝试过MySQL和Postgres的全文搜索,在某些场景下效果不错,但在处理大规模、高并发的全文检索时,这些都不是专为此设计的解决方案。因此,当谈到搜索,Elasticsearch是首选!
是什么?

Elasticsearch是一个基于Lucene构建的搜索服务器,它提供了一个分布式、多租户支持的全文本搜索引擎,拥有RESTful Web接口和无模式的JSON文档。换句话说,这是一站式解决方案的精华所在!
更深入的内容:访问官方Elasticsearch概述
迷茫了吗?让我们来分解一下:
- 实时性:系统在输入数据后几乎立即反馈,使整个过程无明显延迟。例如即时通讯。
- 近实时:表示有微小(但可感知)的延迟。您可以在索引中插入/更新记录,并确保它在不到一秒钟的时间内变得可搜索。
- 全文搜索:允许你在Elasticsearch数据库的文档中搜索所有字段的记录。比如,如果你有一个博客,每个博客帖子都有标题、简介、正文和评论区,搜索特定字符串时,可能在某条评论中找到结果。
- 分布式:意味着可以拥有多个位于不同数据中心或区域的Elasticsearch节点,提高检索的可靠性。
- REST API:意味着你可以使用标准HTTP请求访问你的Elasticsearch集群。
如何使用?
运行Elasticsearch有几种方式: A. 使用Vagrant启动带有所有依赖项的虚拟机。 B. 在您的操作系统上安装二进制包。 C. 不安装任何东西,直接使用免费的Heroku实例!
安装与启动
Elasticsearch需要Java 8支持。如果您想在本地机器上"原生"安装Elasticsearch,你需要先安装Java。但我们建议不运行Java(因为它可能存在安全问题),而是使用Vagrant来启动一个虚拟机。如果你已经使用Vagrant,请继续阅读。
首先克隆这个仓库:
git clone git@github.com:docdis/learn-elasticsearch.git && cd learn-elasticsearch
然后在终端运行以下命令:
vagrant up
请注意,安装可能需要几分钟时间,您可以先预览下面的教程部分。
其他操作系统的安装方法
- Ubuntu: 在Ubuntu上安装Elasticsearch。
- Mac:如果不在意在Mac上运行Java,可以通过Homebrew安装Elasticsearch。
- Windows: 可参考官方指南,但我们强烈推荐Vagrant。
验证Elasticsearch状态
确认一切正常工作,打开终端并执行以下命令:
curl -XGET http://localhost:9200
您应该能看到类似这样的响应:

教程
一旦安装完成,访问这个链接观看视频教程:
访问:Elasticsearch入门。如果不想接收邮件,可以使用假信息注册。
使用curl插入记录(REST API)
curl -XPUT 'http://localhost:9200/twitter/tweet/1' -d '{"user":"kimchy","post_date":"2009-11-15T14:12:12","message" : "trying out Elasticsearch"}'
上面的命令仅是个起点,更多操作技巧敬请探索。
结论
Elasticsearch不仅提供了强大且灵活的搜索能力,还能适应各种规模的应用需求,无论是初创项目还是大型企业都可以从中受益。其REST API使得与其他编程语言的集成变得轻松愉快,无论您是Node.js开发者、Elixir爱好者还是Python专家,都能在短时间内掌握使用技巧。
此外,Elasticsearch的分布式特性使其能够应对高可用性和大数据量的挑战,使其成为现代Web应用的理想搜索解决方案。如果你尚未尝试,现在就加入Elasticsearch的世界,开启高效搜索的新篇章吧!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2暂无简介Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00