Keras模型导出ONNX时节点描述泄露本地文件路径问题分析
2025-04-29 08:05:20作者:史锋燃Gardner
问题描述
在使用Keras 3.8.0将模型导出为ONNX格式时,发现了一个潜在的安全隐患。导出的ONNX模型中,每个计算节点(node)的描述属性(description)都包含了完整的本地文件系统路径信息。这些路径暴露了Python环境安装位置、项目目录结构等敏感信息。
技术背景
ONNX(Open Neural Network Exchange)是一种开放的神经网络模型表示格式,允许在不同框架之间转换和部署模型。Keras通过model.export()
方法支持将模型导出为ONNX格式。
问题表现
当使用Netron等工具可视化导出的ONNX模型时,选择任意非输入/输出节点,可以在节点属性中看到类似以下的调用栈信息:
C:\Users\USER\python_environments\env\lib\site-packages\keras\src\backend\torch\core.py(202): convert_to_tensor
C:\Users\USER\python_environments\env\lib\site-packages\keras\src\ops\core.py(952): convert_to_tensor
...
这些信息完整记录了模型导出时的Python调用栈,包括:
- Python环境安装路径
- 项目源代码路径
- 框架内部实现细节
安全隐患
这种信息泄露可能带来以下风险:
- 暴露开发环境配置和目录结构
- 泄露项目文件组织方式
- 可能被恶意利用进行针对性攻击
- 不符合企业数据安全规范
问题根源
这个问题源于Keras在导出ONNX模型时,默认将PyTorch后端生成的调用栈信息保留在了节点的doc_string
属性中。这些调试信息本应在发布版本中被移除。
解决方案
目前有两种解决方法:
临时解决方案
使用ONNX Python API手动清除节点描述信息:
import onnx
model = onnx.load("model.onnx")
for node in model.graph.node:
node.doc_string = ""
onnx.save(model, "clean_model.onnx")
长期解决方案
建议Keras团队在未来的版本中:
- 默认不包含调试信息
- 提供导出选项控制是否包含调用栈
- 对路径信息进行匿名化处理
最佳实践
对于生产环境中的模型导出,建议:
- 始终检查导出模型的元数据
- 建立模型导出前的清理流程
- 考虑使用CI/CD流水线自动处理敏感信息
- 对导出模型进行安全审计
总结
Keras导出ONNX模型时的节点描述信息泄露是一个需要注意的安全问题。开发者在共享或部署模型前,应当检查并清理这些敏感信息。期待Keras在未来版本中提供更安全的默认导出行为。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
191
2.15 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
968
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23