探索深度视频修复:可学习门控时间转移模块
在这个数字化的时代,视频已经成为我们记录生活和传播信息的重要媒介之一。然而,由于拍摄过程中的意外,视频中可能会出现损坏或缺失的部分,这给我们的视觉体验带来了困扰。为了解决这个问题,我们很高兴向你推荐一个创新的开源项目——"Learnable Gated Temporal Shift Module for Deep Video Inpainting"。这个项目由 NTU 的研究团队在 BMVC 2019 年提出,旨在利用深度学习技术进行视频修复。
项目简介
该项目提供了对 Free-form Video Inpainting(FVI)问题的解决方案,它是一种自由形式的视频修复方法,可以处理任意形状和大小的图像损伤。项目包括了论文中提出的两种模型:一种是基于3D门控卷积和时间补丁GAN的方法,另一种则是更轻量级的Learnable Gated Temporal Shift Module(LGTSM)。LGTSM 在保持性能的同时,显著减少了模型参数和训练时间。
技术分析
项目的核心在于LGTS模块,它是对原始的时间转移模块(TSM)的一种改进。TSM通过在不同时间步长上移动部分卷积核来增加模型对时间序列的理解,而LGTSM则引入了门控机制,使这种转移更加灵活和可控。这种设计使得模型能够更好地捕捉到视频序列中的动态信息,实现高效且高质量的视频修复。
应用场景
这个项目不仅适用于常规的视频修复,还可以应用到视频编辑、视频增强等领域。例如,在电影后期制作中,它可以用来修复因镜头故障导致的缺陷;在社交媒体上,它可以用于改善用户上传的破损或模糊视频;此外,对于监控摄像头视频的修复也有着广泛的应用前景。
项目特点
- 高效修复: LGTSM 模块大幅降低了模型复杂度,使得训练和推理速度提升了约33%。
- 高质输出: 即使简化了模型,修复后的视频质量仍能接近原始作品,达到业界领先水平。
- 自由形态支持: 能够处理任意形状和大小的图像损伤,适应性强。
- 开源代码: 提供完整的PyTorch实现,便于研究人员和开发者复现结果,探索更多可能。
要开始使用这个项目,请按照项目文档中的说明设置环境,并参考训练与测试指南。让我们一起投身于深度学习驱动的视频修复领域,共同推动技术的边界,带给人们更优质的视听享受。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00