OpenAI Agents Python 项目:如何自定义工具化代理的最大运行轮次
2025-05-25 12:46:38作者:邵娇湘
在 OpenAI Agents Python 项目中,开发者经常需要将智能代理(Agent)转换为可调用的工具(Tool)。这种转换通过as_tool方法实现,但默认情况下存在一个限制:代理运行时最多只能执行10轮交互(DEFAULT_MAX_TURNS)。本文将深入探讨这一限制的解决方案。
默认行为的问题
当使用标准方法将代理转换为工具时,系统会调用Runner.run方法执行代理。然而,这个方法内部默认设置了10轮的最大交互次数限制。对于某些复杂任务,特别是需要多轮思考或复杂决策的场景,这个默认值可能不够用,导致代理在完成任务前就被强制终止。
解决方案的实现
项目维护者提供了两种解决思路:
-
官方推荐方案:通过自定义工具化代理的方式,开发者可以完全控制代理的运行参数。这种方法虽然需要更多代码,但提供了最大的灵活性。
-
参数扩展方案:另一种思路是修改
as_tool方法,增加max_turns参数。这种方法更直接,但需要修改库代码,可能不适合所有场景。
实践示例
以下是一个完整的自定义工具化代理实现示例:
def agent_as_tool(
agent: Agent,
tool_name: str | None,
tool_description: str | None,
custom_output_extractor: Callable[[RunResult], Awaitable[str]] | None = None,
max_turns: int = 10,
) -> Tool:
"""
将Agent转换为Tool,可完全控制运行参数
"""
@function_tool(
name_override=tool_name,
description_override=tool_description,
)
async def run_agent(context: RunContextWrapper, input: str) -> str:
result = await Runner.run(
starting_agent=agent,
input=input,
context=context.context,
max_turns=max_turns,
run_config=RunConfig(input_guardrails=[], output_guardrails=[]),
)
if custom_output_extractor:
return await custom_output_extractor(result)
return ItemHelpers.text_message_outputs(result.new_items)
return run_agent
这个实现允许开发者:
- 自定义工具名称和描述
- 设置最大运行轮次
- 添加自定义输出处理逻辑
- 配置输入输出防护机制
最佳实践建议
-
合理设置max_turns:根据任务复杂度调整该值,太大会浪费资源,太小可能无法完成任务。
-
监控代理运行:对于长时间运行的代理,建议添加监控机制,避免无限循环或资源浪费。
-
性能考量:增加最大轮次会影响响应时间和计算资源使用,需要进行权衡。
通过这种自定义工具化代理的方法,开发者可以更灵活地控制代理行为,适应各种复杂场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178