OpenAI Agents Python 项目:如何自定义工具化代理的最大运行轮次
2025-05-25 21:58:49作者:邵娇湘
在 OpenAI Agents Python 项目中,开发者经常需要将智能代理(Agent)转换为可调用的工具(Tool)。这种转换通过as_tool方法实现,但默认情况下存在一个限制:代理运行时最多只能执行10轮交互(DEFAULT_MAX_TURNS)。本文将深入探讨这一限制的解决方案。
默认行为的问题
当使用标准方法将代理转换为工具时,系统会调用Runner.run方法执行代理。然而,这个方法内部默认设置了10轮的最大交互次数限制。对于某些复杂任务,特别是需要多轮思考或复杂决策的场景,这个默认值可能不够用,导致代理在完成任务前就被强制终止。
解决方案的实现
项目维护者提供了两种解决思路:
-
官方推荐方案:通过自定义工具化代理的方式,开发者可以完全控制代理的运行参数。这种方法虽然需要更多代码,但提供了最大的灵活性。
-
参数扩展方案:另一种思路是修改
as_tool方法,增加max_turns参数。这种方法更直接,但需要修改库代码,可能不适合所有场景。
实践示例
以下是一个完整的自定义工具化代理实现示例:
def agent_as_tool(
agent: Agent,
tool_name: str | None,
tool_description: str | None,
custom_output_extractor: Callable[[RunResult], Awaitable[str]] | None = None,
max_turns: int = 10,
) -> Tool:
"""
将Agent转换为Tool,可完全控制运行参数
"""
@function_tool(
name_override=tool_name,
description_override=tool_description,
)
async def run_agent(context: RunContextWrapper, input: str) -> str:
result = await Runner.run(
starting_agent=agent,
input=input,
context=context.context,
max_turns=max_turns,
run_config=RunConfig(input_guardrails=[], output_guardrails=[]),
)
if custom_output_extractor:
return await custom_output_extractor(result)
return ItemHelpers.text_message_outputs(result.new_items)
return run_agent
这个实现允许开发者:
- 自定义工具名称和描述
- 设置最大运行轮次
- 添加自定义输出处理逻辑
- 配置输入输出防护机制
最佳实践建议
-
合理设置max_turns:根据任务复杂度调整该值,太大会浪费资源,太小可能无法完成任务。
-
监控代理运行:对于长时间运行的代理,建议添加监控机制,避免无限循环或资源浪费。
-
性能考量:增加最大轮次会影响响应时间和计算资源使用,需要进行权衡。
通过这种自定义工具化代理的方法,开发者可以更灵活地控制代理行为,适应各种复杂场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
211
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212