【免费下载】 Airflow 中文文档教程
2026-01-23 04:43:55作者:侯霆垣
1. 项目介绍
Apache Airflow 是一个开源的工作流管理平台,用于编排和调度复杂的数据工程任务。它允许用户通过 Python 脚本定义工作流,并使用 DAG(有向无环图)来表示任务之间的依赖关系。Airflow 提供了丰富的功能,如任务调度、监控、日志记录和错误处理,使其成为数据工程师和数据科学家的理想工具。
2. 项目快速启动
安装 Airflow
首先,确保你已经安装了 Python 和 pip。然后,使用以下命令安装 Airflow:
pip install apache-airflow
初始化数据库
安装完成后,初始化 Airflow 的数据库:
airflow db init
启动 Web 服务器
启动 Airflow 的 Web 服务器:
airflow webserver --port 8080
启动调度器
在另一个终端窗口中,启动 Airflow 的调度器:
airflow scheduler
创建并运行一个简单的 DAG
在 airflow/dags 目录下创建一个新的 Python 文件 example_dag.py,内容如下:
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime
default_args = {
'owner': 'airflow',
'start_date': datetime(2023, 1, 1),
}
dag = DAG(
'example_dag',
default_args=default_args,
description='A simple tutorial DAG',
schedule_interval='@daily',
)
t1 = BashOperator(
task_id='print_date',
bash_command='date',
dag=dag,
)
t2 = BashOperator(
task_id='sleep',
bash_command='sleep 5',
dag=dag,
)
t1 >> t2
保存文件后,访问 http://localhost:8080,在 Airflow 的 Web 界面中启用并运行这个 DAG。
3. 应用案例和最佳实践
应用案例
- 数据管道管理:Airflow 常用于管理复杂的数据管道,确保数据从源系统到目标系统的传输和处理过程自动化。
- ETL 任务调度:在数据仓库环境中,Airflow 可以调度 ETL(提取、转换、加载)任务,确保数据及时更新。
- 机器学习模型训练:在机器学习项目中,Airflow 可以调度模型训练、评估和部署任务,确保模型持续优化。
最佳实践
- 模块化 DAG:将复杂的 DAG 分解为多个模块化的任务,提高代码的可维护性和可读性。
- 错误处理:使用 Airflow 的错误处理机制,如重试和警报,确保任务失败时能够及时处理。
- 监控和日志:利用 Airflow 的监控和日志功能,实时跟踪任务的执行情况,及时发现和解决问题。
4. 典型生态项目
- Apache Kafka:与 Kafka 集成,用于实时数据流的处理和传输。
- Apache Spark:与 Spark 集成,用于大规模数据处理和分析。
- Apache Hive:与 Hive 集成,用于数据仓库的构建和管理。
- Apache Superset:与 Superset 集成,用于数据可视化和报表生成。
通过这些生态项目的集成,Airflow 可以构建更加复杂和强大的数据处理和分析平台。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249