首页
/ FlagEmbedding项目训练损失不变问题分析与解决方案

FlagEmbedding项目训练损失不变问题分析与解决方案

2025-05-24 07:25:01作者:韦蓉瑛

背景介绍

在使用FlagEmbedding项目进行微调训练时,研究人员发现了一个值得关注的现象:当改变训练数据中负样本对的数量时,训练损失值却保持不变。具体表现为,在保持每个查询的正样本对数量不变的情况下,分别使用1个、4个和10个负样本对进行训练,但训练损失曲线几乎完全重合,没有出现预期的变化。

问题分析

这种现象的出现主要与FlagEmbedding项目的训练机制有关。项目中的微调过程实际上并不直接使用数据集中提供的所有负样本对,而是通过一个关键的超参数train_group_size来控制实际使用的负样本数量。

train_group_size参数的作用是:

  1. 控制每个查询在训练时使用的正负样本总数
  2. 其中始终包含1个正样本
  3. 负样本数量为train_group_size-1

这意味着,即使数据集中为每个查询提供了多个负样本,实际训练时只会从中随机采样指定数量的负样本进行使用。如果这个参数保持不变,增加数据集中的负样本数量并不会影响实际训练过程,因此训练损失曲线也不会发生变化。

解决方案

要解决这个问题,需要根据实际需求合理设置train_group_size参数:

  1. 如果希望使用更多负样本进行训练,可以适当增大train_group_size的值
  2. 参数值应小于等于数据集中实际提供的负样本数量+1
  3. 例如,当数据集中有5个正样本和5个负样本时,可以设置train_group_size最大为6(1正+5负)

需要注意的是,除了显式指定的负样本外,FlagEmbedding还会使用批次内的其他样本作为隐式负样本,这也是影响训练效果的另一个因素。

实践建议

在实际应用中,建议:

  1. 首先评估数据集的质量和规模
  2. 根据硬件条件选择合适的train_group_size
  3. 进行小规模实验验证参数效果
  4. 监控训练损失和下游任务指标的变化

通过合理配置这一参数,可以充分利用数据集中的负样本信息,提高模型微调的效果。同时也要注意,过大的train_group_size可能会导致训练效率下降或内存不足的问题,需要在效果和效率之间找到平衡点。

总结

FlagEmbedding项目中的这一设计体现了深度学习框架中常见的采样策略,通过控制实际参与计算的样本数量来平衡训练效果和计算效率。理解这一机制有助于研究人员更有效地使用该框架进行嵌入模型的微调工作,避免因误解参数作用而导致训练效果不佳的情况。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
198
279
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
949
556
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
346
1.33 K