FlagEmbedding项目训练损失不变问题分析与解决方案
2025-05-24 05:07:12作者:韦蓉瑛
背景介绍
在使用FlagEmbedding项目进行微调训练时,研究人员发现了一个值得关注的现象:当改变训练数据中负样本对的数量时,训练损失值却保持不变。具体表现为,在保持每个查询的正样本对数量不变的情况下,分别使用1个、4个和10个负样本对进行训练,但训练损失曲线几乎完全重合,没有出现预期的变化。
问题分析
这种现象的出现主要与FlagEmbedding项目的训练机制有关。项目中的微调过程实际上并不直接使用数据集中提供的所有负样本对,而是通过一个关键的超参数train_group_size来控制实际使用的负样本数量。
train_group_size参数的作用是:
- 控制每个查询在训练时使用的正负样本总数
- 其中始终包含1个正样本
- 负样本数量为
train_group_size-1
这意味着,即使数据集中为每个查询提供了多个负样本,实际训练时只会从中随机采样指定数量的负样本进行使用。如果这个参数保持不变,增加数据集中的负样本数量并不会影响实际训练过程,因此训练损失曲线也不会发生变化。
解决方案
要解决这个问题,需要根据实际需求合理设置train_group_size参数:
- 如果希望使用更多负样本进行训练,可以适当增大
train_group_size的值 - 参数值应小于等于数据集中实际提供的负样本数量+1
- 例如,当数据集中有5个正样本和5个负样本时,可以设置
train_group_size最大为6(1正+5负)
需要注意的是,除了显式指定的负样本外,FlagEmbedding还会使用批次内的其他样本作为隐式负样本,这也是影响训练效果的另一个因素。
实践建议
在实际应用中,建议:
- 首先评估数据集的质量和规模
- 根据硬件条件选择合适的
train_group_size值 - 进行小规模实验验证参数效果
- 监控训练损失和下游任务指标的变化
通过合理配置这一参数,可以充分利用数据集中的负样本信息,提高模型微调的效果。同时也要注意,过大的train_group_size可能会导致训练效率下降或内存不足的问题,需要在效果和效率之间找到平衡点。
总结
FlagEmbedding项目中的这一设计体现了深度学习框架中常见的采样策略,通过控制实际参与计算的样本数量来平衡训练效果和计算效率。理解这一机制有助于研究人员更有效地使用该框架进行嵌入模型的微调工作,避免因误解参数作用而导致训练效果不佳的情况。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
239
2.37 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
999
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
116
Ascend Extension for PyTorch
Python
78
111
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56