FlagEmbedding项目训练损失不变问题分析与解决方案
2025-05-24 16:03:46作者:韦蓉瑛
背景介绍
在使用FlagEmbedding项目进行微调训练时,研究人员发现了一个值得关注的现象:当改变训练数据中负样本对的数量时,训练损失值却保持不变。具体表现为,在保持每个查询的正样本对数量不变的情况下,分别使用1个、4个和10个负样本对进行训练,但训练损失曲线几乎完全重合,没有出现预期的变化。
问题分析
这种现象的出现主要与FlagEmbedding项目的训练机制有关。项目中的微调过程实际上并不直接使用数据集中提供的所有负样本对,而是通过一个关键的超参数train_group_size来控制实际使用的负样本数量。
train_group_size参数的作用是:
- 控制每个查询在训练时使用的正负样本总数
- 其中始终包含1个正样本
- 负样本数量为
train_group_size-1
这意味着,即使数据集中为每个查询提供了多个负样本,实际训练时只会从中随机采样指定数量的负样本进行使用。如果这个参数保持不变,增加数据集中的负样本数量并不会影响实际训练过程,因此训练损失曲线也不会发生变化。
解决方案
要解决这个问题,需要根据实际需求合理设置train_group_size参数:
- 如果希望使用更多负样本进行训练,可以适当增大
train_group_size的值 - 参数值应小于等于数据集中实际提供的负样本数量+1
- 例如,当数据集中有5个正样本和5个负样本时,可以设置
train_group_size最大为6(1正+5负)
需要注意的是,除了显式指定的负样本外,FlagEmbedding还会使用批次内的其他样本作为隐式负样本,这也是影响训练效果的另一个因素。
实践建议
在实际应用中,建议:
- 首先评估数据集的质量和规模
- 根据硬件条件选择合适的
train_group_size值 - 进行小规模实验验证参数效果
- 监控训练损失和下游任务指标的变化
通过合理配置这一参数,可以充分利用数据集中的负样本信息,提高模型微调的效果。同时也要注意,过大的train_group_size可能会导致训练效率下降或内存不足的问题,需要在效果和效率之间找到平衡点。
总结
FlagEmbedding项目中的这一设计体现了深度学习框架中常见的采样策略,通过控制实际参与计算的样本数量来平衡训练效果和计算效率。理解这一机制有助于研究人员更有效地使用该框架进行嵌入模型的微调工作,避免因误解参数作用而导致训练效果不佳的情况。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110