Shizuku项目在Android高版本中的权限问题分析与解决方案
背景介绍
Shizuku是一款优秀的Android系统服务框架,它允许普通应用以系统权限运行,为开发者提供了更强大的系统级功能调用能力。然而,随着Android系统版本的更新,特别是从Android 11开始,系统对应用数据目录的访问权限进行了更严格的限制,这给Shizuku的启动方式带来了一些挑战。
问题分析
在Android 11及以上版本中,系统对/storage/emulated/0/Android/data/目录实施了严格的访问控制。这一变化直接影响了Shizuku通过ADB启动的传统方式,因为启动脚本默认存放在应用数据目录中,而ADB命令无法直接访问这些受保护的目录。
具体表现为执行以下命令时会遇到权限拒绝错误:
adb shell sh /storage/emulated/0/Android/data/moe.shizuku.privileged.api/start.sh
系统会返回Permission denied错误,这是因为Android 11加强了应用数据目录的保护机制。
技术细节
-
Android数据目录权限模型:从Android 11开始,应用只能访问自己的数据目录(
Android/data/<package_name>/)和其他特定的公共目录。即使通过ADB,也无法直接访问其他应用的数据目录内容。 -
/data/local/tmp目录特性:这是一个系统临时目录,具有以下特点:
- 对ADB命令开放完全访问权限
- 普通应用无权限直接访问
- 系统不会自动清理该目录内容
- 常用于存放需要临时执行的脚本和二进制文件
-
Shizuku启动流程:当通过ADB执行启动脚本时,Shizuku实际上会执行以下操作:
- 将starter文件从应用数据目录复制到
/data/local/tmp/ - 在临时目录中执行starter
- starter负责启动Shizuku服务
- 将starter文件从应用数据目录复制到
现有解决方案
目前用户可以采用以下变通方法启动Shizuku:
-
手动复制法:
- 使用支持访问Android/data目录的文件管理器(如X-plore)
- 将Shizuku的启动目录复制到可访问位置(如下载目录)
- 修改start.sh脚本中的路径指向
- 通过ADB执行修改后的脚本
-
脚本修改法:
adb shell mkdir -p /data/local/tmp/shizuku adb push start.sh /data/local/tmp/shizuku/ adb shell chmod +x /data/local/tmp/shizuku/start.sh adb shell sh /data/local/tmp/shizuku/start.sh
潜在改进建议
基于技术分析,可以考虑以下优化方向:
-
启动脚本预置:Shizuku应用首次安装时,可以将启动脚本预置到
/data/local/tmp/目录,这样后续ADB启动时可以直接调用。 -
多路径支持:在应用设置中增加启动脚本路径配置选项,允许用户指定自定义路径。
-
启动方式引导:根据Android版本自动推荐最适合的启动方式,并提供详细的操作指引。
安全考量
任何涉及系统目录访问的修改都需要谨慎考虑安全性:
/data/local/tmp目录虽然可写,但应确保脚本来源可信- 启动过程应包含完整性校验,防止恶意篡改
- 临时文件使用后应及时清理,避免留下安全隐患
总结
Android系统的权限收紧是大势所趋,Shizuku作为需要系统级权限的工具,其启动方式也需要与时俱进。理解Android的权限模型和目录访问规则,有助于我们找到既符合系统要求又能满足功能需求的解决方案。对于开发者而言,提前适配这些变化可以带来更好的用户体验;对于用户而言,了解这些技术细节则有助于更顺利地使用这类高级工具。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00