Shizuku项目在Android高版本中的权限问题分析与解决方案
背景介绍
Shizuku是一款优秀的Android系统服务框架,它允许普通应用以系统权限运行,为开发者提供了更强大的系统级功能调用能力。然而,随着Android系统版本的更新,特别是从Android 11开始,系统对应用数据目录的访问权限进行了更严格的限制,这给Shizuku的启动方式带来了一些挑战。
问题分析
在Android 11及以上版本中,系统对/storage/emulated/0/Android/data/
目录实施了严格的访问控制。这一变化直接影响了Shizuku通过ADB启动的传统方式,因为启动脚本默认存放在应用数据目录中,而ADB命令无法直接访问这些受保护的目录。
具体表现为执行以下命令时会遇到权限拒绝错误:
adb shell sh /storage/emulated/0/Android/data/moe.shizuku.privileged.api/start.sh
系统会返回Permission denied
错误,这是因为Android 11加强了应用数据目录的保护机制。
技术细节
-
Android数据目录权限模型:从Android 11开始,应用只能访问自己的数据目录(
Android/data/<package_name>/
)和其他特定的公共目录。即使通过ADB,也无法直接访问其他应用的数据目录内容。 -
/data/local/tmp目录特性:这是一个系统临时目录,具有以下特点:
- 对ADB命令开放完全访问权限
- 普通应用无权限直接访问
- 系统不会自动清理该目录内容
- 常用于存放需要临时执行的脚本和二进制文件
-
Shizuku启动流程:当通过ADB执行启动脚本时,Shizuku实际上会执行以下操作:
- 将starter文件从应用数据目录复制到
/data/local/tmp/
- 在临时目录中执行starter
- starter负责启动Shizuku服务
- 将starter文件从应用数据目录复制到
现有解决方案
目前用户可以采用以下变通方法启动Shizuku:
-
手动复制法:
- 使用支持访问Android/data目录的文件管理器(如X-plore)
- 将Shizuku的启动目录复制到可访问位置(如下载目录)
- 修改start.sh脚本中的路径指向
- 通过ADB执行修改后的脚本
-
脚本修改法:
adb shell mkdir -p /data/local/tmp/shizuku adb push start.sh /data/local/tmp/shizuku/ adb shell chmod +x /data/local/tmp/shizuku/start.sh adb shell sh /data/local/tmp/shizuku/start.sh
潜在改进建议
基于技术分析,可以考虑以下优化方向:
-
启动脚本预置:Shizuku应用首次安装时,可以将启动脚本预置到
/data/local/tmp/
目录,这样后续ADB启动时可以直接调用。 -
多路径支持:在应用设置中增加启动脚本路径配置选项,允许用户指定自定义路径。
-
启动方式引导:根据Android版本自动推荐最适合的启动方式,并提供详细的操作指引。
安全考量
任何涉及系统目录访问的修改都需要谨慎考虑安全性:
/data/local/tmp
目录虽然可写,但应确保脚本来源可信- 启动过程应包含完整性校验,防止恶意篡改
- 临时文件使用后应及时清理,避免留下安全隐患
总结
Android系统的权限收紧是大势所趋,Shizuku作为需要系统级权限的工具,其启动方式也需要与时俱进。理解Android的权限模型和目录访问规则,有助于我们找到既符合系统要求又能满足功能需求的解决方案。对于开发者而言,提前适配这些变化可以带来更好的用户体验;对于用户而言,了解这些技术细节则有助于更顺利地使用这类高级工具。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









