H2O-3项目中SHAP值反归一化的技术实现
2025-05-31 06:43:29作者:咎竹峻Karen
背景介绍
在机器学习模型解释性领域,SHAP(SHapley Additive exPlanations)值已成为解释模型预测的重要工具。当我们在H2O-3这样的自动化机器学习框架中使用数据归一化预处理时,如何正确解读SHAP值成为一个技术挑战。
数据归一化对SHAP解释的影响
在实际建模过程中,数据科学家经常会对输入特征进行归一化处理,这有助于提高某些算法的性能和收敛速度。然而,当我们需要解释模型时,归一化后的特征值往往失去了业务含义,使得SHAP值的解释变得困难。
H2O-3中的解决方案
H2O-3框架目前没有直接提供SHAP值反归一化的内置功能,但我们可以通过以下技术方案实现:
1. 获取原始SHAP贡献值
首先需要使用predict_contributions
方法获取详细的SHAP贡献值,关键参数包括:
output_space=True
:确保SHAP值与预测值在同一空间output_per_reference=True
:获取每个背景数据点的贡献
2. 反归一化处理
根据原始归一化方法的不同,反归一化处理可分为几种情况:
线性归一化情况:
- 如果归一化仅涉及乘法缩放,可直接对SHAP值进行反向缩放
- 如果同时涉及加减操作,需单独处理偏置项(Bias)
复杂归一化情况:
- 需要采用广义DeepSHAP方法
- 通过线性近似处理非线性变换
3. 验证反归一化结果
为确保反归一化的准确性,需要进行以下验证:
- 检查反归一化后的偏置项是否等于背景数据点的预测值
- 验证贡献值之和是否等于预测值
- 确认数值精度在可接受范围内(通常1e-6到1e-3)
4. 计算最终SHAP值
通过对背景数据点的贡献值取平均,得到最终的反归一化SHAP解释:
denorm_shap_pred.drop("BackgroundRowIdx").groupby("RowIdx").mean()
技术注意事项
- 模型类型影响:不同模型类型(GLM、GBM、XGBoost等)对SHAP计算的支持程度不同
- 链接函数处理:对于使用链接函数的模型,需要确保SHAP值在正确的空间
- 数值精度:不同实现方式可能导致微小的数值差异
- 计算效率:广义DeepSHAP方法会增加计算复杂度
实际应用建议
在实际项目中应用此技术时,建议:
- 记录完整的归一化参数和过程
- 实现自动化验证流程
- 考虑开发自定义可视化工具
- 对关键业务特征进行重点解释
通过这种方法,数据科学家可以在保持模型性能的同时,获得更具业务解释性的模型解释结果,帮助业务人员理解模型决策过程。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0134AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.31 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
290

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
991
587

Ascend Extension for PyTorch
Python
74
103

仓颉编程语言测试用例。
Cangjie
34
60

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401