H2O-3项目中SHAP值反归一化的技术实现
2025-05-31 08:18:09作者:咎竹峻Karen
背景介绍
在机器学习模型解释性领域,SHAP(SHapley Additive exPlanations)值已成为解释模型预测的重要工具。当我们在H2O-3这样的自动化机器学习框架中使用数据归一化预处理时,如何正确解读SHAP值成为一个技术挑战。
数据归一化对SHAP解释的影响
在实际建模过程中,数据科学家经常会对输入特征进行归一化处理,这有助于提高某些算法的性能和收敛速度。然而,当我们需要解释模型时,归一化后的特征值往往失去了业务含义,使得SHAP值的解释变得困难。
H2O-3中的解决方案
H2O-3框架目前没有直接提供SHAP值反归一化的内置功能,但我们可以通过以下技术方案实现:
1. 获取原始SHAP贡献值
首先需要使用predict_contributions
方法获取详细的SHAP贡献值,关键参数包括:
output_space=True
:确保SHAP值与预测值在同一空间output_per_reference=True
:获取每个背景数据点的贡献
2. 反归一化处理
根据原始归一化方法的不同,反归一化处理可分为几种情况:
线性归一化情况:
- 如果归一化仅涉及乘法缩放,可直接对SHAP值进行反向缩放
- 如果同时涉及加减操作,需单独处理偏置项(Bias)
复杂归一化情况:
- 需要采用广义DeepSHAP方法
- 通过线性近似处理非线性变换
3. 验证反归一化结果
为确保反归一化的准确性,需要进行以下验证:
- 检查反归一化后的偏置项是否等于背景数据点的预测值
- 验证贡献值之和是否等于预测值
- 确认数值精度在可接受范围内(通常1e-6到1e-3)
4. 计算最终SHAP值
通过对背景数据点的贡献值取平均,得到最终的反归一化SHAP解释:
denorm_shap_pred.drop("BackgroundRowIdx").groupby("RowIdx").mean()
技术注意事项
- 模型类型影响:不同模型类型(GLM、GBM、XGBoost等)对SHAP计算的支持程度不同
- 链接函数处理:对于使用链接函数的模型,需要确保SHAP值在正确的空间
- 数值精度:不同实现方式可能导致微小的数值差异
- 计算效率:广义DeepSHAP方法会增加计算复杂度
实际应用建议
在实际项目中应用此技术时,建议:
- 记录完整的归一化参数和过程
- 实现自动化验证流程
- 考虑开发自定义可视化工具
- 对关键业务特征进行重点解释
通过这种方法,数据科学家可以在保持模型性能的同时,获得更具业务解释性的模型解释结果,帮助业务人员理解模型决策过程。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0313- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
272
311

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3