Trafilatura项目实战:从Wayback Machine提取新闻内容的技术解析
2025-06-15 20:22:56作者:尤辰城Agatha
背景介绍
Trafilatura是一个优秀的Python库,专门用于从网页中提取结构化文本内容。在实际应用中,我们经常需要从历史存档网站如Wayback Machine中提取新闻内容。本文将通过一个典型案例,深入分析使用Trafilatura处理Wayback Machine存档页面的技术细节和注意事项。
技术挑战
当尝试从Wayback Machine获取的新闻门户首页提取内容时,开发者可能会遇到以下现象:
- 提取结果仅显示日期时间信息
- 新闻标题链接未被正确识别
- 无法获取完整的新闻正文内容
原理分析
Trafilatura的设计初衷是针对文章详情页进行内容提取,其核心算法基于以下机制:
- 主文本块识别:算法会优先寻找包含大量连续文本的DOM节点
- 链接过滤策略:纯链接内容(如导航菜单)会被自动过滤
- 内容评分系统:根据文本密度、段落长度等特征评估内容价值
对于新闻门户首页这类特殊页面:
- 页面主要由新闻标题链接和时间戳组成
- 缺少大段连续文本内容
- 时间戳因无链接且位置突出而被误判为主要内容
解决方案
针对这种特殊情况,建议采用以下技术方案:
-
分层处理策略:
- 第一阶段:使用专用爬虫工具提取页面中的所有新闻链接
- 第二阶段:对每个新闻详情页单独应用Trafilatura提取正文
-
参数调优建议:
# 适当放宽链接过滤条件 extract(downloaded, include_links=True, include_tables=True) -
预处理技巧:
- 对原始HTML进行预处理,增强新闻列表区域的语义标记
- 使用XPath或CSS选择器先定位新闻条目区块
最佳实践
- 对于Wayback Machine存档,建议先使用专门的存档访问库获取干净的历史页面HTML
- 区分处理列表页和详情页,采用不同的提取策略
- 对提取结果进行后处理,结合正则表达式过滤无关内容
总结
Trafilatura在标准文章页面的提取上表现出色,但对于特殊页面结构需要配合其他技术手段。理解其工作原理后,开发者可以通过合理的预处理和后处理流程构建完整的内容提取管道。对于新闻存档项目,建议采用多阶段处理架构,充分发挥Trafilatura在正文提取方面的优势。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219