强力推荐:rerunner-jupiter——JUnit 5的测试失败重跑利器
在软件开发的日常中,我们常常面临着测试不稳定的困扰,尤其是在进行UI或API测试时。而今天,我要向大家隆重介绍一个项目——rerunner-jupiter,这是专为JUnit 5设计的一个扩展插件,它能够立即重新运行失败的测试,极大地提升了我们的测试效率和质量。
项目介绍
rerunner-jupiter是一个轻量级且高效的开源库,旨在解决自动化测试过程中常见的不稳定问题。当你的测试用例由于各种原因(比如网络波动、短暂的服务异常)失败时,不需要手动介入,rerunner-jupiter会自动为你重复执行这些测试,直到成功或者达到预设的重试次数。
技术分析
基于JUnit 5的现代测试框架,rerunner-jupiter提供了精细的注解支持,如@RepeatedIfExceptionsTest,使得开发者可以灵活配置重跑逻辑。这些注解不仅允许你指定失败后重试的次数,还可以精确控制哪些类型的异常触发重跑,并提供自定义的显示名称和重复信息,提高了测试报告的可读性。此外,通过支持参数化测试与延时重试(suspend选项),rerunner-jupiter展现了其适应复杂测试场景的能力。
应用场景
想象一下,在集成测试阶段,因为第三方服务暂时不可用导致的测试失败;或者是在持续集成环境中,偶尔的环境抖动造成测试不稳定。rerunner-jupiter正是为这些问题而生。特别是在以下场合大放异彩:
- UI自动化测试:对于依赖浏览器交互的测试,网络延迟或页面加载异常频繁发生。
- API端点测试:接口返回不稳定时,快速验证是否为临时故障。
- 性能敏感测试:遇到系统GC或短暂的资源紧张导致的测试失败。
- 参数化测试:针对不同的输入数据,确保每一种情况都能稳定通过。
项目特点
- 灵活性高:支持自定义重跑条件、次数、异常类型,以及重跑时的输出格式。
- 易于集成:简单地将依赖添加到Maven项目即可,无缝对接JUnit 5。
- 智能重试:仅对因特定异常失败的测试进行重试,避免了不必要的循环。
- 适用于参数化测试:增加了对复杂数据集测试的支持,让多变的测试场景变得可控。
- 增强反馈:清晰的重试日志帮助开发者迅速定位问题根源。
结语
rerunner-jupiter是每个追求高效测试流程团队的必备神器。无论你是测试工程师还是全栈开发者,它都能让你的测试更加健壮、智能化。通过减少因为偶发因素导致的测试失败而浪费的时间,rerunner-jupiter让测试套件的维护变得更加轻松高效。加入到这个项目的星标行列,共同见证测试自动化领域的这一革新实践吧!
以上就是对rerunner-jupiter的推荐介绍,希望能够激发你在测试自动化路上的新灵感。记得动手尝试,体验它带给你的便捷与强大。🌟不要忘了给这个项目一些爱,给予Star支持哦!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00