BlenderLLM 的项目扩展与二次开发
2025-06-24 09:31:40作者:冯爽妲Honey
1、项目的基础介绍
BlenderLLM 是一个大型语言模型,专门设计用于根据用户指令生成 CAD 脚本。这些脚本随后在 Blender 中执行,以渲染 3D 模型。该项目旨在解决 CAD 应用程序中输入形式的复杂性,以及用户对 CAD 应用程序的使用门槛较高的问题。通过提供用户友好的界面和简化的输入方法,BlenderLLM 旨在鼓励更广泛的采用 CAD 立向 LLM。
2、项目的核心功能
BlenderLLM 的核心功能包括:
- 基于用户指令生成 CAD 脚本: 使用户能够通过自然语言描述他们想要的 3D 模型,然后由 BlenderLLM 生成相应的 CAD 脚本。
- 在 Blender 中执行脚本: 将生成的 CAD 脚本在 Blender 中执行,从而渲染出用户想要的 3D 模型。
- 开源代码和模型权重: 项目提供了开源代码和模型权重,方便用户进行二次开发和扩展。
- 全面评估框架: 项目开发了 CADBench 评估框架,用于评估 LLM 在生成 CAD 脚本方面的能力。
3、项目使用了哪些框架或库?
BlenderLLM 项目使用了以下框架和库:
- Blender: 用于执行 CAD 脚本和渲染 3D 模型。
- PyTorch: 用于训练和推理大型语言模型。
- Transformers: 用于处理和生成文本数据。
- GPT-4o: 用于评估 LLM 在 CADBench 上的性能。
4、项目的代码目录及介绍
项目的代码目录结构如下:
BlenderLLM/
├── assets/
├── scripts/
├── .gitignore
├── LICENSE
├── README.md
├── chat.py
├── modeling.py
└── requirements.txt
- assets/: 存储项目所需的资源文件。
- scripts/: 存储项目使用的脚本文件。
- .gitignore: 定义在 Git 仓库中忽略的文件和目录。
- LICENSE: 定义项目的开源许可证。
- README.md: 项目的说明文档。
- chat.py: 用于与 BlenderLLM 进行对话的 Python 脚本。
- modeling.py: 用于生成和执行 CAD 脚本的 Python 脚本。
- requirements.txt: 定义项目所需的 Python 包。
5、对项目进行扩展或者二次开发的方向
BlenderLLM 项目具有很大的扩展和二次开发潜力,以下是一些可能的方向:
- 增加对高级 CAD 任务的支持: 扩展 BlenderLLM,使其能够处理更高级的 CAD 任务,例如材料属性、表面处理和内部结构细节。
- 支持多模态输入: 允许 BlenderLLM 接受多种类型的输入,例如将文本与图像结合起来,以便更准确地理解用户的需求。
- 开发用户友好的界面: 创建一个易于使用的界面,使用户能够更轻松地与 BlenderLLM 交互和创建 3D 模型。
- 集成其他工具和库: 将 BlenderLLM 与其他工具和库集成,例如机器学习库、计算机视觉库等,以提供更强大的功能。
BlenderLLM 项目是一个很有前景的开源项目,具有巨大的扩展和二次开发潜力。通过扩展和二次开发,BlenderLLM 可以变得更加强大和实用,为 CAD 领域提供更先进的解决方案。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
635
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
652
276
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
245
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
98
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.72 K