BlenderLLM 的项目扩展与二次开发
2025-06-24 21:57:06作者:冯爽妲Honey
1、项目的基础介绍
BlenderLLM 是一个大型语言模型,专门设计用于根据用户指令生成 CAD 脚本。这些脚本随后在 Blender 中执行,以渲染 3D 模型。该项目旨在解决 CAD 应用程序中输入形式的复杂性,以及用户对 CAD 应用程序的使用门槛较高的问题。通过提供用户友好的界面和简化的输入方法,BlenderLLM 旨在鼓励更广泛的采用 CAD 立向 LLM。
2、项目的核心功能
BlenderLLM 的核心功能包括:
- 基于用户指令生成 CAD 脚本: 使用户能够通过自然语言描述他们想要的 3D 模型,然后由 BlenderLLM 生成相应的 CAD 脚本。
- 在 Blender 中执行脚本: 将生成的 CAD 脚本在 Blender 中执行,从而渲染出用户想要的 3D 模型。
- 开源代码和模型权重: 项目提供了开源代码和模型权重,方便用户进行二次开发和扩展。
- 全面评估框架: 项目开发了 CADBench 评估框架,用于评估 LLM 在生成 CAD 脚本方面的能力。
3、项目使用了哪些框架或库?
BlenderLLM 项目使用了以下框架和库:
- Blender: 用于执行 CAD 脚本和渲染 3D 模型。
- PyTorch: 用于训练和推理大型语言模型。
- Transformers: 用于处理和生成文本数据。
- GPT-4o: 用于评估 LLM 在 CADBench 上的性能。
4、项目的代码目录及介绍
项目的代码目录结构如下:
BlenderLLM/
├── assets/
├── scripts/
├── .gitignore
├── LICENSE
├── README.md
├── chat.py
├── modeling.py
└── requirements.txt
- assets/: 存储项目所需的资源文件。
- scripts/: 存储项目使用的脚本文件。
- .gitignore: 定义在 Git 仓库中忽略的文件和目录。
- LICENSE: 定义项目的开源许可证。
- README.md: 项目的说明文档。
- chat.py: 用于与 BlenderLLM 进行对话的 Python 脚本。
- modeling.py: 用于生成和执行 CAD 脚本的 Python 脚本。
- requirements.txt: 定义项目所需的 Python 包。
5、对项目进行扩展或者二次开发的方向
BlenderLLM 项目具有很大的扩展和二次开发潜力,以下是一些可能的方向:
- 增加对高级 CAD 任务的支持: 扩展 BlenderLLM,使其能够处理更高级的 CAD 任务,例如材料属性、表面处理和内部结构细节。
- 支持多模态输入: 允许 BlenderLLM 接受多种类型的输入,例如将文本与图像结合起来,以便更准确地理解用户的需求。
- 开发用户友好的界面: 创建一个易于使用的界面,使用户能够更轻松地与 BlenderLLM 交互和创建 3D 模型。
- 集成其他工具和库: 将 BlenderLLM 与其他工具和库集成,例如机器学习库、计算机视觉库等,以提供更强大的功能。
BlenderLLM 项目是一个很有前景的开源项目,具有巨大的扩展和二次开发潜力。通过扩展和二次开发,BlenderLLM 可以变得更加强大和实用,为 CAD 领域提供更先进的解决方案。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19