Liger-Kernel项目中交叉熵损失函数的梯度测试问题分析
2025-06-10 11:23:51作者:尤辰城Agatha
背景介绍
Liger-Kernel是一个深度学习框架项目,其中包含了多种神经网络核心组件的实现。在深度学习模型的训练过程中,损失函数的正确性至关重要,特别是其梯度计算是否准确,直接影响到模型参数更新的有效性。
问题描述
在Liger-Kernel项目的测试代码中,针对SoftCap交叉熵损失函数(LigerCrossEntropy)的单元测试存在一个重要的遗漏。当前的测试虽然验证了前向传播的结果,但缺少了对反向传播梯度计算的验证测试。
具体来说,在test_softcap_cross_entropy测试用例中,代码执行了以下操作:
- 创建输入张量和目标张量
- 初始化损失函数
- 执行前向传播计算损失值
- 执行反向传播计算梯度
然而,测试代码在反向传播后没有添加梯度验证的断言语句(torch.allclose()),这意味着虽然梯度被计算了,但程序没有验证这些梯度值是否正确。
技术影响
缺少梯度验证可能会带来以下潜在问题:
- 无法确保损失函数的梯度计算实现是正确的
- 如果梯度计算有误,可能导致模型训练不收敛或收敛到次优解
- 问题可能在更复杂的模型训练中才显现,增加调试难度
改进建议
针对这个问题,建议的修改方案包括:
- 在反向传播后添加梯度验证断言
- 优化数据类型转换的位置,将to(torch.float32)操作移到更合理的位置
- 可以考虑添加多种测试用例,验证不同输入情况下的梯度计算
最佳实践
在编写深度学习组件的单元测试时,应该遵循以下原则:
- 同时测试前向传播和反向传播
- 验证输出值和梯度的数值正确性
- 覆盖边界情况和典型情况
- 保持测试代码的清晰和可维护性
总结
单元测试是保证深度学习框架可靠性的重要手段。对于损失函数这类核心组件,完整的测试应该包括前向计算和反向梯度计算的验证。Liger-Kernel项目中的这个案例提醒我们,在编写测试代码时要全面考虑各种验证场景,确保组件的各个方面都得到充分测试。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133