Liger-Kernel项目中交叉熵损失函数的梯度测试问题分析
2025-06-10 08:31:23作者:尤辰城Agatha
背景介绍
Liger-Kernel是一个深度学习框架项目,其中包含了多种神经网络核心组件的实现。在深度学习模型的训练过程中,损失函数的正确性至关重要,特别是其梯度计算是否准确,直接影响到模型参数更新的有效性。
问题描述
在Liger-Kernel项目的测试代码中,针对SoftCap交叉熵损失函数(LigerCrossEntropy)的单元测试存在一个重要的遗漏。当前的测试虽然验证了前向传播的结果,但缺少了对反向传播梯度计算的验证测试。
具体来说,在test_softcap_cross_entropy测试用例中,代码执行了以下操作:
- 创建输入张量和目标张量
- 初始化损失函数
- 执行前向传播计算损失值
- 执行反向传播计算梯度
然而,测试代码在反向传播后没有添加梯度验证的断言语句(torch.allclose()),这意味着虽然梯度被计算了,但程序没有验证这些梯度值是否正确。
技术影响
缺少梯度验证可能会带来以下潜在问题:
- 无法确保损失函数的梯度计算实现是正确的
- 如果梯度计算有误,可能导致模型训练不收敛或收敛到次优解
- 问题可能在更复杂的模型训练中才显现,增加调试难度
改进建议
针对这个问题,建议的修改方案包括:
- 在反向传播后添加梯度验证断言
- 优化数据类型转换的位置,将to(torch.float32)操作移到更合理的位置
- 可以考虑添加多种测试用例,验证不同输入情况下的梯度计算
最佳实践
在编写深度学习组件的单元测试时,应该遵循以下原则:
- 同时测试前向传播和反向传播
- 验证输出值和梯度的数值正确性
- 覆盖边界情况和典型情况
- 保持测试代码的清晰和可维护性
总结
单元测试是保证深度学习框架可靠性的重要手段。对于损失函数这类核心组件,完整的测试应该包括前向计算和反向梯度计算的验证。Liger-Kernel项目中的这个案例提醒我们,在编写测试代码时要全面考虑各种验证场景,确保组件的各个方面都得到充分测试。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218