DeepSpeed-MII项目中的量化推理技术解析
2025-07-05 16:30:16作者:农烁颖Land
量化推理作为深度学习模型部署中的关键技术,能够显著降低模型推理时的计算和存储开销。本文将以DeepSpeed-MII项目为例,深入分析其量化推理功能的技术实现细节和使用注意事项。
量化推理功能概述
DeepSpeed-MII项目提供了对量化模型推理的支持,特别是针对大语言模型的6位浮点(FP6)量化。这项技术通过降低模型参数的精度来减少内存占用和计算需求,同时尽可能保持模型精度。
技术实现细节
-
量化模式支持:
- 目前支持WF6AF16(权重6位浮点,激活16位浮点)量化模式
- 量化主要应用于模型的QKVO(Query、Key、Value、Output)线性层
-
数据类型要求:
- 量化推理当前仅支持FP16输入,不支持BF16
- 使用前需要将模型显式转换为FP16格式
使用注意事项
-
模型转换要求:
from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "mistralai/Mixtral-8x7B-v0.1" save_path = f"fp16/{model_id}" model = AutoModelForCausalLM.from_pretrained(model_id) model = model.to(torch.float16) tokenizer = AutoTokenizer.from_pretrained(model_id) model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) -
当前限制:
- 对稀疏MoE(混合专家)模型的支持有限,量化仅应用于密集层
- 由于MLP部分不支持量化,整体加速效果可能不明显
- 大模型可能仍无法完全放入单个GPU
未来发展方向
DeepSpeed团队正在开发针对稀疏MoE的FP6 GeMM(通用矩阵乘法)实现,这将进一步提升量化技术在MoE模型上的效果。这项改进完成后,将能够更好地支持如Mixtral等MoE架构的大模型。
实践建议
对于希望尝试DeepSpeed-MII量化推理功能的开发者,建议:
- 首先将目标模型转换为FP16格式
- 评估量化后的模型精度是否满足应用需求
- 对于MoE模型,需要权衡量化带来的收益与模型精度损失
- 关注项目更新,及时获取对稀疏MoE量化的支持
量化推理技术仍在快速发展中,DeepSpeed-MII项目提供了前沿的量化实现方案,值得持续关注其技术演进。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882