PAM 的项目扩展与二次开发
2025-06-14 06:32:00作者:郜逊炳
1. 项目的基础介绍
PAM(Perceive Anything Model)是一个用于图像和视频的端到端区域级视觉理解框架。它通过集成大型语言模型(LLMs),实现了对象分割的同时,生成多样化、区域特定的语义输出,包括分类、标签定义、功能解释和详细字幕。PAM 旨在简化和提高视觉理解的效率,适用于多种图像和视频分析任务。
2. 项目的核心功能
- 对象分割:PAM 扩展了 SAM 2 模型,通过集成大型语言模型,实现了对图像和视频中的对象进行精确分割。
- 语义输出:除了分割功能,PAM 还能生成与分割区域相关的丰富语义信息,如区域分类、功能解释等。
- 数据增强:项目提供了一个专用的数据精炼和增强流程,以生成高质量的图像和视频区域语义注释数据集。
3. 项目使用了哪些框架或库?
- Python:作为主要的编程语言。
- PyTorch:用于深度学习模型的构建和训练。
- LLaVA:集成大型语言模型,用于生成区域特定的语义输出。
- SAM 2:分割任意模型的二次开发版本,用于视觉特征的提取。
- Flash-Attention:用于提高模型训练和推理的效率。
4. 项目的代码目录及介绍
PAM/
├── assets/ # 存储项目相关的资源文件
├── data/ # 存储训练和测试数据集
├── llava/ # LLaVA 模型相关代码和配置
├── notebooks/ # Jupyter 笔记本,用于演示和实验
├── sam2/ # SAM 2 模型相关代码和配置
├── trl/ # 用于训练的代码和配置
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── pyproject.toml # 项目配置文件
5. 对项目进行扩展或者二次开发的方向
- 模型优化:可以针对特定的应用场景,优化模型的结构和参数,提高分割和语义生成的准确性。
- 数据增强:开发新的数据增强方法,进一步提高模型的泛化能力。
- 多模态融合:探索将其他模态(如音频、文本)与视觉数据融合的新方法,增强模型的理解能力。
- 应用拓展:将 PAM 应用于更多实际场景,如自动驾驶、医疗影像分析、智能监控等。
- 性能提升:通过优化算法和计算资源管理,提高模型的推理速度和效率。
- 交互式界面:开发图形用户界面,使得非技术用户也能轻松使用 PAM 进行图像和视频分析。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0