在nnUNet中集成WandB进行训练可视化与日志记录
2025-06-02 16:00:34作者:宣利权Counsellor
概述
nnUNet作为医学图像分割领域的标杆框架,其训练过程的可视化对于模型调优和结果分析至关重要。本文将详细介绍如何在nnUNet框架中集成Weights & Biases(WandB)工具,实现训练过程的实时监控、指标记录和图像可视化。
WandB集成方案
准备工作
首先需要安装WandB客户端库:
pip install wandb
自定义Trainer实现
nnUNet采用模块化设计,最佳实践是通过继承基础Trainer类来实现自定义功能:
- 在
nnunetv2/training/nnUNetTrainer目录下创建新的训练器类 - 重写关键训练方法,插入WandB日志记录逻辑
import wandb
import numpy as np
from nnunetv2.training.nnUNetTrainer.nnUNetTrainer import nnUNetTrainer
class nnUNetTrainerWandB(nnUNetTrainer):
def __init__(self, plans, configuration, fold, output_folder):
super().__init__(plans, configuration, fold, output_folder)
wandb.init(project="nnUNet_Medical_Segmentation")
def on_epoch_end(self):
super().on_epoch_end()
# 记录训练指标
wandb.log({
"train_loss": self.logger.my_fantastic_loss,
"val_loss": self.logger.my_fantastic_val_loss,
"epoch": self.current_epoch
})
def validate(self, *args, **kwargs):
outputs = super().validate(*args, **kwargs)
# 可视化验证结果
for batch in validation_loader:
wandb.log({
"input_image": wandb.Image(batch['image'][0]),
"prediction": wandb.Image(outputs[0].argmax(0)),
"ground_truth": wandb.Image(batch['label'][0])
})
return outputs
关键实现细节
-
图像数据预处理:医学图像通常需要特殊处理才能正确显示
- 窗宽窗位调整
- 多通道转RGB
- 归一化处理
-
指标选择:除基础loss外,建议记录:
- Dice系数
- Hausdorff距离
- 特定器官的分割指标
-
采样策略:全量验证集可视化会导致日志过大,建议:
- 每N个epoch记录一次
- 随机选择部分切片展示
- 使用低分辨率预览
训练执行
使用自定义Trainer启动训练:
nnUNetv2_train [...] -tr nnUNetTrainerWandB
高级技巧
-
超参数记录:自动记录所有训练配置参数
wandb.config.update(self.plans) -
模型检查点保存:将最佳模型保存到WandB
wandb.save(os.path.join(self.output_folder, "*.pth")) -
资源监控:记录GPU显存、CPU利用率等系统指标
可视化效果优化
- 多模态融合显示:对于多模态数据,可采用叠加显示
- 轮廓对比:预测结果与GT以轮廓形式叠加显示
- 错误区域高亮:用不同颜色标记FP/FN区域
- 3D切片浏览:上传多张切片生成可交互浏览面板
常见问题处理
-
数据保密问题:
- 使用WandB的私有项目
- 上传前匿名化处理
- 仅显示ROI区域
-
大图像处理:
- 下采样显示
- 切片展示
- 使用WandB的媒体面板
-
指标异常检测:
- 设置合理阈值告警
- 记录梯度分布
- 跟踪参数变化
通过以上方法,研究人员可以全面掌握nnUNet模型的训练动态,及时发现并解决问题,大幅提高医学图像分割模型的开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258