scikit-learn中稀疏矩阵线性回归的样本权重一致性问题
2025-05-01 15:01:31作者:冯爽妲Honey
在机器学习库scikit-learn的使用过程中,我们发现当使用稀疏矩阵(如csr_array)作为输入数据时,LinearRegression模型在样本权重处理上存在不一致性问题。这个问题在用户设置或不设置样本权重时,会导致模型系数出现显著差异。
问题现象
当使用稀疏矩阵作为输入特征X时,LinearRegression模型会出现以下异常情况:
- 即使样本权重设置为单位权重(即所有样本权重为1),模型系数与不设置样本权重时的结果不一致
- 这种不一致性在设置fit_intercept为True或False时都会出现
- 使用密集矩阵(dense array)作为输入时,不会出现此问题
技术分析
经过深入分析,我们发现问题的根源在于LinearRegression在处理稀疏矩阵时使用的底层求解器scipy.sparse.linalg.lsqr。这个求解器对数值精度和收敛条件较为敏感,特别是在处理样本权重时。
对比Ridge回归模型(当alpha=0时理论上等同于线性回归)的表现,我们发现:
- 当设置较小的容差(tol=1e-12)时,Ridge回归能够保持样本权重一致性
- 但当容差设置较大(tol=1e-4)时,Ridge回归也会出现类似的不一致问题
这表明数值精度和求解器的收敛条件对结果有重要影响。
解决方案建议
针对这一问题,我们建议采取以下改进措施:
- 在LinearRegression中暴露tol参数,允许用户控制求解精度,类似于Ridge回归的做法
- 设置默认的严格容差值,基于输入数据的dtype自动确定
- 在文档中明确说明稀疏矩阵输入时的数值精度注意事项
这些改进将有助于确保模型在不同输入形式和样本权重设置下保持结果的一致性,提高模型的可靠性和可预测性。
影响范围
该问题主要影响以下使用场景:
- 使用稀疏矩阵作为输入数据的线性回归任务
- 需要精确控制样本权重的应用场景
- 对模型系数稳定性要求较高的应用
对于大多数使用密集矩阵的常规应用,不会受到此问题的影响。
结论
稀疏矩阵在线性回归中的应用需要特别注意数值精度问题。通过适当调整求解器参数和收敛条件,可以确保模型在不同设置下保持稳定和一致的表现。这一发现也为scikit-learn中其他基于稀疏矩阵的算法实现提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19