scikit-learn中稀疏矩阵线性回归的样本权重一致性问题
2025-05-01 21:17:18作者:冯爽妲Honey
在机器学习库scikit-learn的使用过程中,我们发现当使用稀疏矩阵(如csr_array)作为输入数据时,LinearRegression模型在样本权重处理上存在不一致性问题。这个问题在用户设置或不设置样本权重时,会导致模型系数出现显著差异。
问题现象
当使用稀疏矩阵作为输入特征X时,LinearRegression模型会出现以下异常情况:
- 即使样本权重设置为单位权重(即所有样本权重为1),模型系数与不设置样本权重时的结果不一致
- 这种不一致性在设置fit_intercept为True或False时都会出现
- 使用密集矩阵(dense array)作为输入时,不会出现此问题
技术分析
经过深入分析,我们发现问题的根源在于LinearRegression在处理稀疏矩阵时使用的底层求解器scipy.sparse.linalg.lsqr。这个求解器对数值精度和收敛条件较为敏感,特别是在处理样本权重时。
对比Ridge回归模型(当alpha=0时理论上等同于线性回归)的表现,我们发现:
- 当设置较小的容差(tol=1e-12)时,Ridge回归能够保持样本权重一致性
- 但当容差设置较大(tol=1e-4)时,Ridge回归也会出现类似的不一致问题
这表明数值精度和求解器的收敛条件对结果有重要影响。
解决方案建议
针对这一问题,我们建议采取以下改进措施:
- 在LinearRegression中暴露tol参数,允许用户控制求解精度,类似于Ridge回归的做法
- 设置默认的严格容差值,基于输入数据的dtype自动确定
- 在文档中明确说明稀疏矩阵输入时的数值精度注意事项
这些改进将有助于确保模型在不同输入形式和样本权重设置下保持结果的一致性,提高模型的可靠性和可预测性。
影响范围
该问题主要影响以下使用场景:
- 使用稀疏矩阵作为输入数据的线性回归任务
- 需要精确控制样本权重的应用场景
- 对模型系数稳定性要求较高的应用
对于大多数使用密集矩阵的常规应用,不会受到此问题的影响。
结论
稀疏矩阵在线性回归中的应用需要特别注意数值精度问题。通过适当调整求解器参数和收敛条件,可以确保模型在不同设置下保持稳定和一致的表现。这一发现也为scikit-learn中其他基于稀疏矩阵的算法实现提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134