scikit-learn中稀疏矩阵线性回归的样本权重一致性问题
2025-05-01 07:23:36作者:冯爽妲Honey
在机器学习库scikit-learn的使用过程中,我们发现当使用稀疏矩阵(如csr_array)作为输入数据时,LinearRegression模型在样本权重处理上存在不一致性问题。这个问题在用户设置或不设置样本权重时,会导致模型系数出现显著差异。
问题现象
当使用稀疏矩阵作为输入特征X时,LinearRegression模型会出现以下异常情况:
- 即使样本权重设置为单位权重(即所有样本权重为1),模型系数与不设置样本权重时的结果不一致
- 这种不一致性在设置fit_intercept为True或False时都会出现
- 使用密集矩阵(dense array)作为输入时,不会出现此问题
技术分析
经过深入分析,我们发现问题的根源在于LinearRegression在处理稀疏矩阵时使用的底层求解器scipy.sparse.linalg.lsqr。这个求解器对数值精度和收敛条件较为敏感,特别是在处理样本权重时。
对比Ridge回归模型(当alpha=0时理论上等同于线性回归)的表现,我们发现:
- 当设置较小的容差(tol=1e-12)时,Ridge回归能够保持样本权重一致性
- 但当容差设置较大(tol=1e-4)时,Ridge回归也会出现类似的不一致问题
这表明数值精度和求解器的收敛条件对结果有重要影响。
解决方案建议
针对这一问题,我们建议采取以下改进措施:
- 在LinearRegression中暴露tol参数,允许用户控制求解精度,类似于Ridge回归的做法
- 设置默认的严格容差值,基于输入数据的dtype自动确定
- 在文档中明确说明稀疏矩阵输入时的数值精度注意事项
这些改进将有助于确保模型在不同输入形式和样本权重设置下保持结果的一致性,提高模型的可靠性和可预测性。
影响范围
该问题主要影响以下使用场景:
- 使用稀疏矩阵作为输入数据的线性回归任务
- 需要精确控制样本权重的应用场景
- 对模型系数稳定性要求较高的应用
对于大多数使用密集矩阵的常规应用,不会受到此问题的影响。
结论
稀疏矩阵在线性回归中的应用需要特别注意数值精度问题。通过适当调整求解器参数和收敛条件,可以确保模型在不同设置下保持稳定和一致的表现。这一发现也为scikit-learn中其他基于稀疏矩阵的算法实现提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.24 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258