Sapiens项目深度图计算中的内存问题分析与解决方案
2025-06-10 07:48:55作者:昌雅子Ethen
问题背景
在使用Sapiens项目进行深度图计算时,部分用户遇到了程序异常退出的问题。具体表现为:当执行depth.sh脚本时,程序会突然终止且不显示任何错误信息。通过日志分析发现,程序在加载模型时占用了大量系统内存,但未正确利用GPU显存资源。
问题现象分析
用户反馈的主要现象包括:
- 程序执行过程中突然被终止,仅显示"Killed"信息
- 系统内存被完全占用,但GPU显存未被使用
- 问题出现在加载预训练模型阶段(sapiens_2b_render_people_epoch_25_torchscript.pt2)
技术排查过程
通过插入调试断点,确认问题发生在vis_depth.py文件的模型加载阶段:
exp_model = load_model(args.checkpoint, USE_TORCHSCRIPT)
进一步分析发现:
- 即使用户使用高端GPU(如RTX 4090D 24G)
- 即使将batch_size减小到1
- 问题依然存在
这表明问题并非简单的显存不足,而是模型加载方式存在问题。
根本原因
问题的核心在于PyTorch的模型加载机制:
- 默认情况下,torch.jit.load()会将模型加载到CPU内存
- 对于大型模型(如2B参数的Sapiens模型),这会消耗大量系统内存
- 当系统内存不足时,Linux内核会强制终止进程(OOM Killer机制)
解决方案
通过修改模型加载方式,强制将模型直接加载到GPU显存中:
torch.jit.load(checkpoint, map_location='cuda:0')
这一修改实现了:
- 避免模型先加载到系统内存再转移到显存的过程
- 直接利用GPU显存资源
- 防止系统内存被过度占用
技术建议
对于类似深度学习项目的部署,建议:
- 显存管理:大型模型应直接加载到GPU,避免中间的内存拷贝
- 资源监控:使用工具如nvidia-smi监控显存使用情况
- 模型选择:根据硬件条件选择合适的模型规模(如0.3B版本可能更适合资源有限的环境)
- 错误处理:在代码中添加显存不足的异常捕获和处理逻辑
总结
Sapiens项目中的深度图计算问题展示了深度学习部署中的一个常见挑战:模型加载与硬件资源管理的平衡。通过正确配置PyTorch的模型加载位置,可以有效解决内存不足导致的程序异常终止问题。这一经验也适用于其他需要处理大型神经网络模型的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878