Apache YuniKorn: Kubernetes 上的强大资源调度器
项目介绍
Apache YuniKorn 是一个专为在 Kubernetes 环境中运行批量数据处理和机器学习工作负载设计的资源调度器。它提供了内置的全面调度能力,包括层次化队列管理、跨队列资源公平性、作业顺序控制(支持先进先出/FIFO 和公平调度)、可插拔节点排序策略以及抢占机制等。YuniKorn 充分兼容 Kubernetes 接口,允许在现有的 K8s 集群上无缝部署,以优化资源利用和提升应用程序性能。
项目快速启动
要快速启动并访问 YuniKorn 的web界面,你需要在已经配置好的Kubernetes集群上进行以下操作:
部署YuniKorn调度器
由于具体的部署步骤依赖于YuniKorn的最新版本和具体环境,建议参考YuniKorn的官方文档中的安装指南。通常过程涉及使用Helm包或直接应用其提供的YAML配置文件到集群中。
访问Web UI
一旦调度器被成功部署,Web UI也会随之部署在一个容器中。通过以下命令可以开启Web界面的标准端口转发:
kubectl port-forward svc/yunikorn-service 9889:9889 -n yunikorn
执行后,你可以通过浏览器访问 http://localhost:9889 来查看Web UI。UI提供了一个集中视图,用于监控集群资源使用情况和所有应用程序的信息。
应用案例和最佳实践
YuniKorn在大数据处理和机器学习领域特别有用,比如作为Spark on Kubernetes的调度器,实现高效的“Gang调度”,确保所有的作业任务能够一起分配资源,减少任务等待时间,避免部分完成的任务因资源不足而失败。最佳实践包括配置合理的队列策略,利用YuniKorn的预抢占机制来自动管理资源分配,以及通过与Prometheus和Grafana集成来实时监控调度和服务状态,优化资源利用率和工作流效率。
典型生态项目整合
YuniKorn不仅作为一个独立的调度解决方案存在,也无缝融入云原生生态系统。与Spark、Hadoop等大数据处理框架结合使用时,它展示出了强大的批处理作业管理和调度能力。此外,对于想要细粒度控制Kubernetes资源分配,特别是在需要保证复杂工作负载(如分布式训练任务)高效运行的场景下,YuniKorn是理想的选型。开发者和运维人员可以通过调整YuniKorn的配置,实现更加智能化和弹性化的资源管理,从而降低成本,提高云资源的使用效率。
此文档概览了Apache YuniKorn的核心功能、如何快速部署及其在实际应用场景中的价值。为了深入了解和实施,建议详细阅读官方文档和参与社区讨论。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00