Compose Destinations 项目中生成代码的访问控制问题解析
问题背景
在 Kotlin 多平台开发中,Compose Destinations 是一个流行的导航库,它通过注解处理器自动生成导航相关的代码。在实际使用中,开发者经常需要控制这些生成代码的访问级别,特别是在多模块项目中,合理的访问控制对维护代码结构和安全性至关重要。
访问控制需求
开发者在使用 Compose Destinations 时,主要有两种访问控制需求:
-
全局控制:希望所有生成的导航代码(如 Destination 类和导航相关逻辑)都使用
internal访问修饰符,限制在当前模块内可见。 -
细粒度控制:希望根据具体 Composable 函数的访问级别来决定生成的导航代码的访问级别。例如,如果一个 Composable 函数标记为
internal,那么它对应的导航代码也应该是internal。
解决方案
版本1的解决方案
在 Compose Destinations 的 v1 版本中,可以通过 Gradle 配置参数 compose-destinations.useComposableVisibility 来实现访问控制。这个参数会让生成的代码继承对应 Composable 函数的可见性。
版本2的改进
在即将发布的 v2 版本中,Compose Destinations 对访问控制进行了优化和改进:
-
更灵活的配置:开发者可以更精细地控制每个 Destination 的可见性,不再局限于全局设置。
-
更好的默认行为:v2 版本改进了默认的可见性逻辑,使其更符合开发者的预期。
-
简化迁移:对于从 v1 迁移到 v2 的项目,库提供了清晰的迁移指南,帮助开发者平滑过渡新的访问控制机制。
最佳实践建议
-
多模块项目:在多模块项目中,建议将导航相关的生成代码设置为
internal,这样可以更好地封装模块实现细节。 -
公共API设计:如果某些 Destination 需要作为公共API暴露给其他模块使用,可以单独将这些 Composable 函数标记为
public。 -
版本选择:新项目建议直接使用 v2 版本,以获得更好的访问控制体验;现有项目可以根据实际情况决定是否迁移。
总结
Compose Destinations 提供了灵活的机制来控制生成代码的访问级别,从 v1 的全局配置到 v2 的细粒度控制,不断优化开发体验。合理使用这些访问控制功能,可以帮助开发者构建更安全、更易维护的多模块 Compose 应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00