Compose Destinations 项目中生成代码的访问控制问题解析
问题背景
在 Kotlin 多平台开发中,Compose Destinations 是一个流行的导航库,它通过注解处理器自动生成导航相关的代码。在实际使用中,开发者经常需要控制这些生成代码的访问级别,特别是在多模块项目中,合理的访问控制对维护代码结构和安全性至关重要。
访问控制需求
开发者在使用 Compose Destinations 时,主要有两种访问控制需求:
-
全局控制:希望所有生成的导航代码(如 Destination 类和导航相关逻辑)都使用
internal
访问修饰符,限制在当前模块内可见。 -
细粒度控制:希望根据具体 Composable 函数的访问级别来决定生成的导航代码的访问级别。例如,如果一个 Composable 函数标记为
internal
,那么它对应的导航代码也应该是internal
。
解决方案
版本1的解决方案
在 Compose Destinations 的 v1 版本中,可以通过 Gradle 配置参数 compose-destinations.useComposableVisibility
来实现访问控制。这个参数会让生成的代码继承对应 Composable 函数的可见性。
版本2的改进
在即将发布的 v2 版本中,Compose Destinations 对访问控制进行了优化和改进:
-
更灵活的配置:开发者可以更精细地控制每个 Destination 的可见性,不再局限于全局设置。
-
更好的默认行为:v2 版本改进了默认的可见性逻辑,使其更符合开发者的预期。
-
简化迁移:对于从 v1 迁移到 v2 的项目,库提供了清晰的迁移指南,帮助开发者平滑过渡新的访问控制机制。
最佳实践建议
-
多模块项目:在多模块项目中,建议将导航相关的生成代码设置为
internal
,这样可以更好地封装模块实现细节。 -
公共API设计:如果某些 Destination 需要作为公共API暴露给其他模块使用,可以单独将这些 Composable 函数标记为
public
。 -
版本选择:新项目建议直接使用 v2 版本,以获得更好的访问控制体验;现有项目可以根据实际情况决定是否迁移。
总结
Compose Destinations 提供了灵活的机制来控制生成代码的访问级别,从 v1 的全局配置到 v2 的细粒度控制,不断优化开发体验。合理使用这些访问控制功能,可以帮助开发者构建更安全、更易维护的多模块 Compose 应用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









