Compose Destinations 项目中生成代码的访问控制问题解析
问题背景
在 Kotlin 多平台开发中,Compose Destinations 是一个流行的导航库,它通过注解处理器自动生成导航相关的代码。在实际使用中,开发者经常需要控制这些生成代码的访问级别,特别是在多模块项目中,合理的访问控制对维护代码结构和安全性至关重要。
访问控制需求
开发者在使用 Compose Destinations 时,主要有两种访问控制需求:
-
全局控制:希望所有生成的导航代码(如 Destination 类和导航相关逻辑)都使用
internal访问修饰符,限制在当前模块内可见。 -
细粒度控制:希望根据具体 Composable 函数的访问级别来决定生成的导航代码的访问级别。例如,如果一个 Composable 函数标记为
internal,那么它对应的导航代码也应该是internal。
解决方案
版本1的解决方案
在 Compose Destinations 的 v1 版本中,可以通过 Gradle 配置参数 compose-destinations.useComposableVisibility 来实现访问控制。这个参数会让生成的代码继承对应 Composable 函数的可见性。
版本2的改进
在即将发布的 v2 版本中,Compose Destinations 对访问控制进行了优化和改进:
-
更灵活的配置:开发者可以更精细地控制每个 Destination 的可见性,不再局限于全局设置。
-
更好的默认行为:v2 版本改进了默认的可见性逻辑,使其更符合开发者的预期。
-
简化迁移:对于从 v1 迁移到 v2 的项目,库提供了清晰的迁移指南,帮助开发者平滑过渡新的访问控制机制。
最佳实践建议
-
多模块项目:在多模块项目中,建议将导航相关的生成代码设置为
internal,这样可以更好地封装模块实现细节。 -
公共API设计:如果某些 Destination 需要作为公共API暴露给其他模块使用,可以单独将这些 Composable 函数标记为
public。 -
版本选择:新项目建议直接使用 v2 版本,以获得更好的访问控制体验;现有项目可以根据实际情况决定是否迁移。
总结
Compose Destinations 提供了灵活的机制来控制生成代码的访问级别,从 v1 的全局配置到 v2 的细粒度控制,不断优化开发体验。合理使用这些访问控制功能,可以帮助开发者构建更安全、更易维护的多模块 Compose 应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00