首页
/ LightM-UNet:轻量级医疗图像分割的Mamba融合UNet

LightM-UNet:轻量级医疗图像分割的Mamba融合UNet

2024-09-11 03:17:24作者:蔡怀权

项目介绍

LightM-UNet 是一个旨在医学图像分割领域的轻量化模型,它巧妙地结合了UNet与Mamba架构的优势,拥有仅1百万参数的精简设计。该模型经过2D和3D实际数据集的验证,在性能上超越了现有的顶尖模型,如nnU-Net,且在参数数量上分别减少了116倍和224倍相对于nnU-Net和U-Mamba。通过显著降低计算成本和参数需求,LightM-UNet在保持高精度的同时,提高了在资源受限环境下的适用性。

项目快速启动

环境准备

首先,确保你的系统安装了CUDA 11.6或更高版本。然后创建并激活一个名为lightmunet的conda虚拟环境,具体步骤如下:

conda create -n lightmunet python=3.10 -y
conda activate lightmunet

接下来,为了运行或训练模型,你需要执行特定的命令。例如,要开始训练一个3D全分辨率的数据集,使用以下命令:

nnUNetv2_train DATASET_ID 3d_fullres all -tr nnUNetTrainerLightMUNet

对于推理(Inference),假设你已经有了输入文件夹INPUT_FOLDER并希望将结果保存到OUTPUT_FOLDER,可以使用下面的命令进行2D模型的推理:

nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_ID -c 2d -tr nnUNetTrainerLightMUNet --disable_tta

同样,对于3D模型的推理,只需改变 -c 参数为 3d_fullres

nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_ID -c 3d_fullres -tr nnUNetTrainerLightMUNet --disable_tta

应用案例和最佳实践

LightM-UNet特别适合于医疗图像中的精细结构分割,如肿瘤检测,其中它能在平均交并比(mIoU)上提供超过2.11%的性能提升,特别是在小尺寸病灶的识别上,实现了3.63%的mIoU提升。最佳实践建议,利用其轻量特性,针对特定的硬件配置优化模型部署,确保高效的数据预处理,并且考虑到模型的适应性和鲁棒性,可以在不同医疗机构的小样本数据上微调模型。

典型生态项目

尽管该项目本身聚焦于模型实现,LightM-UNet的成功应用促进了医疗AI领域中轻量化解决方案的发展。研究者和开发者可以探索将其应用于便携式医疗设备、远程医疗服务或是资源有限的环境中,以及与其他数据增强技术或迁移学习策略结合,以进一步扩大其应用范围。


请注意,以上指南基于提供的项目描述和示例命令构建,实际操作时可能需参照项目最新文档调整。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
267
2.54 K
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
pytorchpytorch
Ascend Extension for PyTorch
Python
98
126
flutter_flutterflutter_flutter
暂无简介
Dart
557
124
fountainfountain
一个用于服务器应用开发的综合工具库。 - 零配置文件 - 环境变量和命令行参数配置 - 约定优于配置 - 深刻利用仓颉语言特性 - 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
54
11
IssueSolutionDemosIssueSolutionDemos
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
604
cangjie_compilercangjie_compiler
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1