LightM-UNet:轻量级医疗图像分割的Mamba融合UNet
项目介绍
LightM-UNet 是一个旨在医学图像分割领域的轻量化模型,它巧妙地结合了UNet与Mamba架构的优势,拥有仅1百万参数的精简设计。该模型经过2D和3D实际数据集的验证,在性能上超越了现有的顶尖模型,如nnU-Net,且在参数数量上分别减少了116倍和224倍相对于nnU-Net和U-Mamba。通过显著降低计算成本和参数需求,LightM-UNet在保持高精度的同时,提高了在资源受限环境下的适用性。
项目快速启动
环境准备
首先,确保你的系统安装了CUDA 11.6或更高版本。然后创建并激活一个名为lightmunet的conda虚拟环境,具体步骤如下:
conda create -n lightmunet python=3.10 -y
conda activate lightmunet
接下来,为了运行或训练模型,你需要执行特定的命令。例如,要开始训练一个3D全分辨率的数据集,使用以下命令:
nnUNetv2_train DATASET_ID 3d_fullres all -tr nnUNetTrainerLightMUNet
对于推理(Inference),假设你已经有了输入文件夹INPUT_FOLDER并希望将结果保存到OUTPUT_FOLDER,可以使用下面的命令进行2D模型的推理:
nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_ID -c 2d -tr nnUNetTrainerLightMUNet --disable_tta
同样,对于3D模型的推理,只需改变 -c 参数为 3d_fullres:
nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_ID -c 3d_fullres -tr nnUNetTrainerLightMUNet --disable_tta
应用案例和最佳实践
LightM-UNet特别适合于医疗图像中的精细结构分割,如肿瘤检测,其中它能在平均交并比(mIoU)上提供超过2.11%的性能提升,特别是在小尺寸病灶的识别上,实现了3.63%的mIoU提升。最佳实践建议,利用其轻量特性,针对特定的硬件配置优化模型部署,确保高效的数据预处理,并且考虑到模型的适应性和鲁棒性,可以在不同医疗机构的小样本数据上微调模型。
典型生态项目
尽管该项目本身聚焦于模型实现,LightM-UNet的成功应用促进了医疗AI领域中轻量化解决方案的发展。研究者和开发者可以探索将其应用于便携式医疗设备、远程医疗服务或是资源有限的环境中,以及与其他数据增强技术或迁移学习策略结合,以进一步扩大其应用范围。
请注意,以上指南基于提供的项目描述和示例命令构建,实际操作时可能需参照项目最新文档调整。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00