【亲测免费】 中文微博情感数据库:助力情感分析的二分类利器
项目介绍
在当今社交媒体盛行的时代,情感分析成为了理解和洞察用户情感的重要工具。为了满足这一需求,我们推出了中文微博情感数据库,这是一个专为情感分析任务设计的二分类数据集。该数据集包含了10500条经过情感标注的中文微博语料,其中训练集10000条,测试集500条。无论你是研究者、开发者还是数据科学家,这个数据集都将为你的情感分析项目提供强有力的支持。
项目技术分析
数据格式
数据集分为两个文件:train.txt(训练集)和test.txt(测试集)。每条语料的格式如下:
mid 情感标签 微博文本
mid:每条微博的唯一标签,可以通过https://m.weibo.cn/status/ + mid访问到该条微博的网页。情感标签:0表示负面情感,1表示正面情感。微博文本:微博的实际内容,其中微博表情、话题、地理定位、视频、文本超链接等都已转义成特定格式。
数据处理
- 微博表情:微博表情被转义成
[xx]的格式,例如[doge]、[允悲]。 - 特殊格式:微博话题、地理定位、视频、文本超链接等被转义成
{%xxxx%}的格式,使用正则表达式可以很方便地进行清洗。
项目及技术应用场景
情感分析
该数据集特别适用于情感分析任务,尤其是二分类问题。你可以使用这个数据集来训练和评估情感分析模型,从而实现对微博文本的情感分类。
社交媒体分析
通过对微博文本的情感分析,你可以深入了解用户在社交媒体上的情感倾向,从而为品牌营销、舆情监控、用户行为分析等提供数据支持。
自然语言处理研究
对于自然语言处理领域的研究者来说,这个数据集是一个宝贵的资源。你可以利用它来研究中文文本的情感分类算法,探索不同模型在情感分析任务中的表现。
项目特点
丰富的数据量
数据集包含了10500条经过情感标注的微博语料,其中训练集10000条,测试集500条。丰富的数据量确保了模型的训练和评估具有足够的代表性。
详细的标注信息
每条微博语料都包含了详细的标注信息,包括情感标签和转义后的微博文本。这使得数据清洗和处理变得更加简单和高效。
开源共享
本数据集遵循开源许可证,任何人都可以免费使用和共享。我们鼓励社区的参与和贡献,欢迎提交Issue或Pull Request,共同完善这个数据集。
灵活的应用场景
无论是学术研究、商业应用还是个人项目,这个数据集都能为你提供灵活的应用场景。你可以根据自己的需求,定制化地使用这个数据集,实现多样化的情感分析任务。
结语
中文微博情感数据库是一个强大且易用的工具,它将为你的情感分析项目提供坚实的基础。无论你是初学者还是资深专家,这个数据集都将帮助你更好地理解和分析中文社交媒体上的用户情感。赶快下载并开始使用吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX00