NeMo-Guardrails 中使用自定义嵌入模型和LLM的技术指南
2025-06-12 16:29:49作者:仰钰奇
概述
NeMo-Guardrails作为一款强大的对话安全框架,提供了灵活的扩展机制,允许开发者集成自定义的嵌入模型(Embedding)和大语言模型(LLM)。本文将详细介绍如何在NeMo-Guardrails中实现这两种自定义组件的集成。
自定义LLM集成
NeMo-Guardrails通过模块化设计支持各种LLM的接入。要实现自定义LLM集成,开发者需要创建一个继承自基础LLM类的子类,并实现核心接口方法。
实现步骤
-
创建自定义LLM类:新建一个Python类继承自
nemoguardrails.llm.providers中的基础LLM类 -
实现核心方法:
generate(): 处理生成文本的核心逻辑- 可选实现
async_generate()用于异步处理
-
配置API端点:在类中配置您的LLM API端点地址和认证信息
-
处理请求响应:根据您的API响应格式,解析并返回NeMo-Guardrails期望的数据结构
示例代码结构
from nemoguardrails.llm.providers import register_llm_provider
@register_llm_provider("custom_llm")
class CustomLLM:
def __init__(self, config):
self.api_url = config.get("api_url")
self.api_key = config.get("api_key")
def generate(self, prompt):
# 实现调用自定义API的逻辑
response = call_custom_api(prompt)
return response["generated_text"]
自定义嵌入模型集成
对于知识库检索等需要嵌入向量的场景,NeMo-Guardrails同样支持自定义嵌入模型的接入。
实现方法
-
创建嵌入提供者类:继承自基础嵌入类
-
实现核心方法:
encode(): 将文本编码为向量- 可选实现批量编码方法提高效率
-
配置模型参数:设置向量维度等必要参数
-
处理API调用:封装对自定义嵌入API的调用逻辑
示例实现
from nemoguardrails.embeddings import EmbeddingsProvider
class CustomEmbeddings(EmbeddingsProvider):
def __init__(self, config):
super().__init__(config)
self.api_endpoint = config["endpoint"]
self.dimensions = 768 # 根据实际模型设置
def encode(self, text):
# 调用自定义嵌入API
response = requests.post(self.api_endpoint, json={"text": text})
return response.json()["embedding"]
配置与使用
完成自定义组件开发后,需要在NeMo-Guardrails配置文件中指定使用这些组件:
models:
- type: custom_llm
api_url: "https://your-llm-api.com"
api_key: "your-api-key"
embeddings:
provider: custom_embeddings
endpoint: "https://your-embeddings-api.com"
最佳实践
- 错误处理:完善API调用中的错误处理和重试机制
- 性能优化:对于频繁调用的接口,考虑实现批处理功能
- 缓存机制:对嵌入结果实施缓存减少重复计算
- 兼容性测试:确保输出格式与NeMo-Guardrails预期一致
总结
通过自定义LLM和嵌入模型的集成,开发者可以充分利用现有基础设施与NeMo-Guardrails框架结合,构建既安全又符合业务需求的对话系统。这种灵活的架构设计使得NeMo-Guardrails能够适应各种企业级应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1