NeMo-Guardrails 中使用自定义嵌入模型和LLM的技术指南
2025-06-12 04:45:36作者:仰钰奇
概述
NeMo-Guardrails作为一款强大的对话安全框架,提供了灵活的扩展机制,允许开发者集成自定义的嵌入模型(Embedding)和大语言模型(LLM)。本文将详细介绍如何在NeMo-Guardrails中实现这两种自定义组件的集成。
自定义LLM集成
NeMo-Guardrails通过模块化设计支持各种LLM的接入。要实现自定义LLM集成,开发者需要创建一个继承自基础LLM类的子类,并实现核心接口方法。
实现步骤
-
创建自定义LLM类:新建一个Python类继承自
nemoguardrails.llm.providers
中的基础LLM类 -
实现核心方法:
generate()
: 处理生成文本的核心逻辑- 可选实现
async_generate()
用于异步处理
-
配置API端点:在类中配置您的LLM API端点地址和认证信息
-
处理请求响应:根据您的API响应格式,解析并返回NeMo-Guardrails期望的数据结构
示例代码结构
from nemoguardrails.llm.providers import register_llm_provider
@register_llm_provider("custom_llm")
class CustomLLM:
def __init__(self, config):
self.api_url = config.get("api_url")
self.api_key = config.get("api_key")
def generate(self, prompt):
# 实现调用自定义API的逻辑
response = call_custom_api(prompt)
return response["generated_text"]
自定义嵌入模型集成
对于知识库检索等需要嵌入向量的场景,NeMo-Guardrails同样支持自定义嵌入模型的接入。
实现方法
-
创建嵌入提供者类:继承自基础嵌入类
-
实现核心方法:
encode()
: 将文本编码为向量- 可选实现批量编码方法提高效率
-
配置模型参数:设置向量维度等必要参数
-
处理API调用:封装对自定义嵌入API的调用逻辑
示例实现
from nemoguardrails.embeddings import EmbeddingsProvider
class CustomEmbeddings(EmbeddingsProvider):
def __init__(self, config):
super().__init__(config)
self.api_endpoint = config["endpoint"]
self.dimensions = 768 # 根据实际模型设置
def encode(self, text):
# 调用自定义嵌入API
response = requests.post(self.api_endpoint, json={"text": text})
return response.json()["embedding"]
配置与使用
完成自定义组件开发后,需要在NeMo-Guardrails配置文件中指定使用这些组件:
models:
- type: custom_llm
api_url: "https://your-llm-api.com"
api_key: "your-api-key"
embeddings:
provider: custom_embeddings
endpoint: "https://your-embeddings-api.com"
最佳实践
- 错误处理:完善API调用中的错误处理和重试机制
- 性能优化:对于频繁调用的接口,考虑实现批处理功能
- 缓存机制:对嵌入结果实施缓存减少重复计算
- 兼容性测试:确保输出格式与NeMo-Guardrails预期一致
总结
通过自定义LLM和嵌入模型的集成,开发者可以充分利用现有基础设施与NeMo-Guardrails框架结合,构建既安全又符合业务需求的对话系统。这种灵活的架构设计使得NeMo-Guardrails能够适应各种企业级应用场景。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K