AWS Deep Learning Containers 项目发布 v1.1-djl-0.33.0-inf-lmi-15.0.0-cu128 版本
AWS Deep Learning Containers 是亚马逊云科技提供的一套深度学习容器镜像,它预装了深度学习框架、库和工具,帮助开发者快速部署和运行深度学习工作负载。这些容器镜像经过优化,可以直接在AWS云平台上使用,大大简化了深度学习环境的配置过程。
本次发布的 v1.1-djl-0.33.0-inf-lmi-15.0.0-cu128 版本主要针对推理场景进行了优化,集成了最新的深度学习工具链和CUDA 12.8支持。该版本的核心是基于DJL(Deep Java Library)0.33.0框架构建,同时包含了LMI(Large Model Inference)15.0.0版本的支持,为大规模模型推理提供了更好的性能表现。
在软件包方面,该容器镜像预装了PyTorch 2.6.0及其配套的torchaudio 2.6.0和torchvision 0.21.0,为计算机视觉和语音处理任务提供了完整的工具链。同时,还包含了transformers 4.51.3、datasets 3.0.1等流行的自然语言处理库,方便开发者进行文本相关的深度学习任务。
CUDA 12.8的支持是该版本的一个重要特性,它带来了最新的GPU加速能力。容器中预装了cuda-command-line-tools-12-8、libcublas-12-8等核心CUDA库,以及NCCL(NVIDIA Collective Communications Library)用于多GPU通信优化。这些底层库的更新为深度学习模型的训练和推理提供了更好的性能基础。
在Python生态方面,该镜像包含了从数据处理到模型部署的全套工具:pandas 2.2.3用于数据处理,scikit-learn 1.6.1和scipy 1.15.3提供机器学习算法支持,numpy 1.26.4作为数值计算基础。这些工具的版本都经过严格测试,确保相互兼容性。
对于开发者而言,使用这个预构建的容器镜像可以省去大量环境配置时间,直接专注于模型开发和部署工作。AWS对这些镜像进行了性能优化和安全加固,适合生产环境使用。特别是对于需要快速部署大规模模型推理服务的团队,这个版本提供了开箱即用的解决方案。
该容器镜像已经发布到AWS ECR仓库,开发者可以通过标准的Docker命令拉取使用。AWS还提供了详细的文档说明如何在不同场景下使用这些深度学习容器,包括单机开发、分布式训练和云端推理部署等多种应用场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00