AWS Deep Learning Containers 项目发布 v1.1-djl-0.33.0-inf-lmi-15.0.0-cu128 版本
AWS Deep Learning Containers 是亚马逊云科技提供的一套深度学习容器镜像,它预装了深度学习框架、库和工具,帮助开发者快速部署和运行深度学习工作负载。这些容器镜像经过优化,可以直接在AWS云平台上使用,大大简化了深度学习环境的配置过程。
本次发布的 v1.1-djl-0.33.0-inf-lmi-15.0.0-cu128 版本主要针对推理场景进行了优化,集成了最新的深度学习工具链和CUDA 12.8支持。该版本的核心是基于DJL(Deep Java Library)0.33.0框架构建,同时包含了LMI(Large Model Inference)15.0.0版本的支持,为大规模模型推理提供了更好的性能表现。
在软件包方面,该容器镜像预装了PyTorch 2.6.0及其配套的torchaudio 2.6.0和torchvision 0.21.0,为计算机视觉和语音处理任务提供了完整的工具链。同时,还包含了transformers 4.51.3、datasets 3.0.1等流行的自然语言处理库,方便开发者进行文本相关的深度学习任务。
CUDA 12.8的支持是该版本的一个重要特性,它带来了最新的GPU加速能力。容器中预装了cuda-command-line-tools-12-8、libcublas-12-8等核心CUDA库,以及NCCL(NVIDIA Collective Communications Library)用于多GPU通信优化。这些底层库的更新为深度学习模型的训练和推理提供了更好的性能基础。
在Python生态方面,该镜像包含了从数据处理到模型部署的全套工具:pandas 2.2.3用于数据处理,scikit-learn 1.6.1和scipy 1.15.3提供机器学习算法支持,numpy 1.26.4作为数值计算基础。这些工具的版本都经过严格测试,确保相互兼容性。
对于开发者而言,使用这个预构建的容器镜像可以省去大量环境配置时间,直接专注于模型开发和部署工作。AWS对这些镜像进行了性能优化和安全加固,适合生产环境使用。特别是对于需要快速部署大规模模型推理服务的团队,这个版本提供了开箱即用的解决方案。
该容器镜像已经发布到AWS ECR仓库,开发者可以通过标准的Docker命令拉取使用。AWS还提供了详细的文档说明如何在不同场景下使用这些深度学习容器,包括单机开发、分布式训练和云端推理部署等多种应用场景。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









