PyCon 2024深度学习与PyTorch教程
2024-08-24 05:35:16作者:温艾琴Wonderful
项目介绍
本项目是为PyCon 2024准备的深度学习与PyTorch教程材料。教程旨在为Python程序员介绍PyTorch和深度学习的基础知识,同时也适合有经验的深度学习实践者和PyTorch用户,以便他们探索其他开源库来扩展PyTorch。教程内容包括深度学习简介、PyTorch API、训练深度神经网络、加速PyTorch模型训练以及微调大型语言模型。
项目快速启动
环境准备
建议在参加工作坊前下载此仓库,以便在没有网络连接的情况下离线访问材料。
git clone https://github.com/rasbt/pycon2024.git
cd pycon2024
安装依赖
请按照以下步骤安装所需的Python库:
pip install -r requirements.txt
运行示例代码
以下是一个简单的PyTorch示例代码,用于训练一个基本的神经网络:
import torch
import torch.nn as nn
import torch.optim as optim
# 定义一个简单的神经网络
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(10, 50)
self.fc2 = nn.Linear(50, 1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 创建网络实例
net = SimpleNN()
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)
# 生成一些假数据
inputs = torch.randn(64, 10)
targets = torch.randn(64, 1)
# 训练网络
for epoch in range(100):
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print(f'Epoch {epoch}, Loss: {loss.item()}')
应用案例和最佳实践
应用案例
- 图像分类:使用PyTorch构建和训练卷积神经网络(CNN)进行图像分类任务。
- 自然语言处理:利用PyTorch微调预训练的Transformer模型进行文本分类或生成任务。
最佳实践
- 数据预处理:确保数据预处理步骤标准化,以提高模型训练的效率和性能。
- 模型保存与加载:使用
torch.save
和torch.load
函数保存和加载训练好的模型,以便后续部署或继续训练。
典型生态项目
- Hugging Face Transformers:一个用于自然语言处理任务的PyTorch库,提供了许多预训练的Transformer模型。
- PyTorch Lightning:一个轻量级的PyTorch封装库,用于简化深度学习模型的训练和部署。
通过本教程,您将能够掌握PyTorch的基础知识和高级功能,并将其应用于各种深度学习任务中。
登录后查看全文
热门项目推荐
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript037RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0403arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript040GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。02CS-Books
🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~01openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0145
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp全栈开发课程中React实验项目的分类修正5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp课程中屏幕放大器知识点优化分析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
Visual-RFT项目中模型路径差异的技术解析 Microcks在OpenShift上部署Keycloak PostgreSQL的权限问题解析 Beyla项目中的HTTP2连接检测问题解析 RaspberryMatic项目中HmIP-BWTH温控器假期模式设置问题分析 Lets-Plot 库中条形图标签在坐标轴反转时的定位问题解析 BedrockConnect项目版本兼容性问题解析与解决方案 LiquidJS 10.21.0版本新增数组过滤功能解析 Mink项目中Selenium驱动切换iframe的兼容性问题分析 Lichess移动端盲棋模式字符串优化解析 sbctl验证功能JSON输出问题解析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

React Native鸿蒙化仓库
C++
118
207

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
527
403

openGauss kernel ~ openGauss is an open source relational database management system
C++
63
145

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
297
1.02 K

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
251

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
391
37

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
42
40

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
583
41

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
693
91