Coral Issue Tracker:您的边缘计算问题解决专家
项目介绍
Coral Issue Tracker 是一个专门为Coral设备和软件提供问题追踪和功能请求的开源项目。无论您在使用Coral设备时遇到任何问题,或者有新的功能需求,都可以通过这个项目进行报告和讨论。虽然当前仓库中的代码已经不再维护,但您可以通过项目提供的链接访问到最新的Coral相关资源,包括Edge TPU Runtime、Coral C++库、Coral Python库以及测试数据等。
项目技术分析
Edge TPU Runtime
Edge TPU Runtime是Coral设备的核心运行时环境,通过运行scripts/runtime/install.sh脚本,您可以轻松安装Edge TPU Runtime,或者通过scripts/runtime/uninstall.sh脚本进行卸载。
Edge TPU Python API
对于Python开发者,Coral提供了基于SWIG的本地层构建脚本。您可以通过运行scripts/build_swig.sh脚本,使用Docker构建适用于不同Linux架构的本地层。随后,通过make wheel命令生成Python库的wheel包,并使用pip3 install $(ls dist/*.whl)命令进行安装。
Native C++ Code
对于C++开发者,Coral提供了丰富的本地代码库,位于src文件夹中。您可以使用make命令,通过Bazel进行构建。例如,运行make tests可以构建所有C++单元测试,而make benchmarks则可以构建所有C++基准测试。通过make help命令,您可以查看所有可用的构建目标。
跨平台支持
Coral Issue Tracker支持多种平台和架构的构建,包括Linux、macOS以及通过Docker进行跨平台构建。在Linux上,您可以进行本地编译或为32位和64位ARM CPU进行交叉编译。在macOS上,通过安装必要的软件和工具,您可以进行本地编译。而通过Docker,您可以在其他操作系统上轻松构建适用于Linux的二进制文件。
项目及技术应用场景
Coral Issue Tracker适用于以下场景:
- 边缘计算开发:无论是嵌入式设备还是边缘服务器,Coral Issue Tracker都能帮助开发者快速定位和解决问题,提升开发效率。
- AI模型部署:在边缘设备上部署AI模型时,Coral Issue Tracker可以帮助开发者优化模型性能,确保模型在边缘设备上的高效运行。
- 跨平台开发:通过Docker支持,开发者可以在不同操作系统上进行跨平台构建,简化开发环境配置,提高开发效率。
项目特点
- 问题追踪与功能请求:Coral Issue Tracker不仅是一个代码仓库,更是一个问题追踪和功能请求的平台,帮助开发者快速解决问题和提出新需求。
- 丰富的技术支持:无论是Python还是C++开发者,Coral Issue Tracker都提供了详细的技术文档和构建脚本,帮助开发者快速上手。
- 跨平台构建:通过Docker支持,Coral Issue Tracker简化了跨平台构建的复杂性,让开发者可以在不同操作系统上轻松构建适用于Linux的二进制文件。
- 社区支持:作为一个开源项目,Coral Issue Tracker拥有活跃的社区支持,开发者可以在社区中交流经验、解决问题。
无论您是边缘计算的新手还是资深开发者,Coral Issue Tracker都能为您提供强大的技术支持和丰富的资源,帮助您在边缘计算领域取得成功。立即访问Coral Issue Tracker,开启您的边缘计算之旅!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00