PyKEEN项目中的扩展分区/回填表示方法探索
2025-07-08 02:10:23作者:邵娇湘
在知识图谱嵌入领域,PyKEEN作为一个强大的Python库,提供了多种实体和关系表示方法。本文将深入探讨一种扩展的分区/回填表示方法,该方法特别适用于生物医学领域的数据处理。
背景与需求
在生物医学知识图谱构建过程中,我们经常遇到以下场景:
- 部分实体(如化学物质)具有预定义的静态特征表示(如分子指纹)
- 另一部分实体(如蛋白质)可能具有不同类型的预定义特征
- 剩余实体则完全没有预定义特征
传统的BackfillRepresentation虽然能够处理部分实体有预定义特征的情况,但无法满足以下进阶需求:
- 对具有预定义特征的实体同时学习可训练的嵌入表示
- 处理多种类型实体各自不同的预定义特征
- 对不同类型的预定义特征应用不同的转换
技术方案设计
核心架构
我们设计了一个分层的表示学习架构,主要包含以下组件:
- 静态特征层:接收预定义的实体特征(如化学指纹、蛋白质指纹等)
- 可训练转换层:对静态特征进行非线性变换
- 组合层:将变换后的静态特征与可训练的嵌入表示结合
- 分区层:处理有预定义特征和无预定义特征的实体
实现细节
在PyKEEN框架下,我们可以利用以下现有组件构建这一架构:
- Embedding:用于可训练的参数化表示
- TransformedRepresentation:对基础表示应用变换
- CombinedRepresentation:组合多个表示
- PartitionRepresentation:实现分区逻辑
对于生物医学领域的典型应用,我们可以分别处理不同类型的实体:
# 化学物质处理流程
化学特征 → 转换层 → 组合层
↑
可训练化学嵌入
# 蛋白质处理流程
蛋白质特征 → 转换层 → 组合层
↑
可训练蛋白质嵌入
# 未知实体处理
直接使用可训练嵌入
关键技术实现
多类型回填表示
我们实现了一个通用的_create_multi_backfill函数,用于处理包含多种预定义特征类型的场景:
- 分配矩阵构建:跟踪每个实体的类型和局部ID
- 形状验证:确保所有基础表示具有兼容的形状
- ID冲突检测:防止实体被多次分配
- 回填嵌入创建:为无预定义特征的实体提供可训练表示
特征组合策略
对于每种实体类型,我们采用以下处理流程:
- 使用
Embedding包装预定义特征(设置trainable=False) - 通过
TransformedRepresentation应用可训练的非线性变换 - 使用
CombinedRepresentation将变换后的特征与额外的可训练嵌入结合
这种设计允许模型同时利用预定义特征的先验知识和数据驱动的表示学习。
应用价值
这种扩展的表示方法在生物医学知识图谱中具有显著优势:
- 多模态特征融合:可以整合化学结构、蛋白质序列等多种类型的特征
- 灵活的特征转换:对不同类型特征应用定制化的非线性变换
- 知识迁移:通过预定义特征实现跨任务的知识共享
- 可扩展性:方便地添加新的实体类型和特征来源
总结
PyKEEN框架的模块化设计使其能够灵活支持各种复杂的表示学习需求。本文介绍的扩展分区/回填表示方法充分利用了PyKEEN的现有组件,通过创新的组合方式解决了生物医学领域中的特定挑战。这种模式也可以推广到其他需要整合多种预定义特征的领域,为复杂知识图谱的表示学习提供了新的思路。
未来工作可以进一步抽象这一模式,将其作为标准组件集成到PyKEEN库中,并探索更高效的特征组合策略和转换架构。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178