PyKEEN项目中的扩展分区/回填表示方法探索
2025-07-08 09:36:39作者:邵娇湘
在知识图谱嵌入领域,PyKEEN作为一个强大的Python库,提供了多种实体和关系表示方法。本文将深入探讨一种扩展的分区/回填表示方法,该方法特别适用于生物医学领域的数据处理。
背景与需求
在生物医学知识图谱构建过程中,我们经常遇到以下场景:
- 部分实体(如化学物质)具有预定义的静态特征表示(如分子指纹)
- 另一部分实体(如蛋白质)可能具有不同类型的预定义特征
- 剩余实体则完全没有预定义特征
传统的BackfillRepresentation虽然能够处理部分实体有预定义特征的情况,但无法满足以下进阶需求:
- 对具有预定义特征的实体同时学习可训练的嵌入表示
- 处理多种类型实体各自不同的预定义特征
- 对不同类型的预定义特征应用不同的转换
技术方案设计
核心架构
我们设计了一个分层的表示学习架构,主要包含以下组件:
- 静态特征层:接收预定义的实体特征(如化学指纹、蛋白质指纹等)
- 可训练转换层:对静态特征进行非线性变换
- 组合层:将变换后的静态特征与可训练的嵌入表示结合
- 分区层:处理有预定义特征和无预定义特征的实体
实现细节
在PyKEEN框架下,我们可以利用以下现有组件构建这一架构:
- Embedding:用于可训练的参数化表示
- TransformedRepresentation:对基础表示应用变换
- CombinedRepresentation:组合多个表示
- PartitionRepresentation:实现分区逻辑
对于生物医学领域的典型应用,我们可以分别处理不同类型的实体:
# 化学物质处理流程
化学特征 → 转换层 → 组合层
↑
可训练化学嵌入
# 蛋白质处理流程
蛋白质特征 → 转换层 → 组合层
↑
可训练蛋白质嵌入
# 未知实体处理
直接使用可训练嵌入
关键技术实现
多类型回填表示
我们实现了一个通用的_create_multi_backfill
函数,用于处理包含多种预定义特征类型的场景:
- 分配矩阵构建:跟踪每个实体的类型和局部ID
- 形状验证:确保所有基础表示具有兼容的形状
- ID冲突检测:防止实体被多次分配
- 回填嵌入创建:为无预定义特征的实体提供可训练表示
特征组合策略
对于每种实体类型,我们采用以下处理流程:
- 使用
Embedding
包装预定义特征(设置trainable=False
) - 通过
TransformedRepresentation
应用可训练的非线性变换 - 使用
CombinedRepresentation
将变换后的特征与额外的可训练嵌入结合
这种设计允许模型同时利用预定义特征的先验知识和数据驱动的表示学习。
应用价值
这种扩展的表示方法在生物医学知识图谱中具有显著优势:
- 多模态特征融合:可以整合化学结构、蛋白质序列等多种类型的特征
- 灵活的特征转换:对不同类型特征应用定制化的非线性变换
- 知识迁移:通过预定义特征实现跨任务的知识共享
- 可扩展性:方便地添加新的实体类型和特征来源
总结
PyKEEN框架的模块化设计使其能够灵活支持各种复杂的表示学习需求。本文介绍的扩展分区/回填表示方法充分利用了PyKEEN的现有组件,通过创新的组合方式解决了生物医学领域中的特定挑战。这种模式也可以推广到其他需要整合多种预定义特征的领域,为复杂知识图谱的表示学习提供了新的思路。
未来工作可以进一步抽象这一模式,将其作为标准组件集成到PyKEEN库中,并探索更高效的特征组合策略和转换架构。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K