在YARP反向代理中实现响应体大小日志记录的技术方案
2025-05-26 02:49:26作者:胡易黎Nicole
背景与需求分析
在现代微服务架构中,反向代理作为流量入口承担着关键作用。YARP(Yet Another Reverse Proxy)作为微软开源的灵活反向代理解决方案,开发者经常需要扩展其功能以满足特定业务需求。一个常见的需求是记录完整的请求/响应日志,特别是响应体大小这一关键指标。
技术挑战
传统基于Content-Length头部的方案存在明显局限性:
- 当服务端采用分块传输编码(Transfer-Encoding: chunked)时,响应头中不会包含Content-Length
- 直接读取响应流会带来性能问题,特别是在高并发场景下
- 需要确保日志记录不影响正常的请求处理流程
核心解决方案
流装饰器模式
通过创建自定义的Stream实现类来包装原始响应流,在数据写入时进行字节计数:
public class CountingStreamDecorator : Stream
{
private readonly Stream _innerStream;
public long BytesWritten { get; private set; }
public override ValueTask WriteAsync(ReadOnlyMemory<byte> buffer,
CancellationToken cancellationToken = default)
{
BytesWritten += buffer.Length;
return _innerStream.WriteAsync(buffer, cancellationToken);
}
// 其他必要方法实现...
}
中间件实现要点
- 执行顺序:必须确保中间件在YARP之前执行
- 流管理:正确处理流生命周期
- 性能优化:使用ValueTask减少异步开销
public async Task Invoke(HttpContext context)
{
var originalStream = context.Response.Body;
using var countingStream = new CountingStreamDecorator(originalStream);
context.Response.Body = countingStream;
await _next(context);
// 记录日志
LogResponseSize(countingStream.BytesWritten);
// 恢复原始流
context.Response.Body = originalStream;
}
关键技术细节
- 数据完整性保证:当中间件的next调用完成时,所有响应数据都已写入计数流
- 分块传输处理:字节计数反映的是实际应用数据,不包含分块编码的开销
- 资源管理:只释放自定义装饰器,原始流由框架管理
性能优化建议
- 优先实现ValueTask版本的方法
- 避免不必要的await操作
- 考虑使用内存池技术减少分配
- 对于高频场景,可使用结构体替代类
扩展思考
该方案不仅适用于日志记录,还可应用于:
- 流量监控
- 请求限流
- 数据校验等场景
通过这种非侵入式的流装饰器模式,开发者可以在不修改核心代理逻辑的情况下,灵活扩展YARP的功能,同时保持系统的高性能和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26