OpenPose项目:如何保存不带人体的渲染姿态数据
在计算机视觉领域,OpenPose是一个广受欢迎的开源库,用于实时多人2D姿态估计。它能够从图像或视频中检测人体、手部和面部关键点。在实际应用中,开发者经常需要保存渲染后的姿态数据,但有时希望不包含原始人体图像,只保留姿态骨架信息。本文将详细介绍如何通过OpenPose命令行参数实现这一需求。
OpenPose渲染输出机制
OpenPose提供了多种输出选项,其中--write_images参数用于保存渲染后的图像。默认情况下,渲染图像会包含原始图像和检测到的姿态骨架的叠加效果。这种混合输出对于可视化很有帮助,但在某些分析场景中,我们可能需要更"干净"的姿态表示。
关键参数解析
要实现只保存姿态骨架而不包含原始人体的渲染效果,关键在于使用--disable_blending参数。这个参数会禁止OpenPose将检测到的姿态与原始图像进行混合渲染。
完整的命令行示例如下:
CUDA_VISIBLE_DEVICES=0 ./build/examples/openpose/openpose.bin \
--image_dir xxx \
--write_json xxx \
--face \
--hand \
--display 0 \
--write_images xxx \
--disable_blending
参数功能详解
- CUDA_VISIBLE_DEVICES=0:指定使用第一个GPU设备进行计算
- --image_dir:指定输入图像所在的目录路径
- --write_json:指定保存JSON格式姿态数据的输出路径
- --face:启用面部关键点检测
- --hand:启用手部关键点检测
- --display 0:禁用实时显示窗口
- --write_images:指定保存渲染图像的输出路径
- --disable_blending:关键参数,禁用原始图像与姿态骨架的混合
实际应用场景
这种只保存姿态骨架的渲染方式在以下场景中特别有用:
- 数据预处理:当需要准备训练数据时,干净的姿态表示可以减少噪声干扰
- 隐私保护:在某些应用中,去除原始图像可以更好地保护个人隐私
- 姿态分析:专注于姿态本身的分析和研究,不受原始图像内容干扰
- 数据可视化:创建更清晰的专业图表和演示材料
技术实现原理
当启用--disable_blending参数时,OpenPose内部会跳过图像混合步骤,直接在黑色背景上绘制姿态骨架。这种处理方式实际上是在渲染管线中移除了最后的合成阶段,只保留了骨架绘制阶段的结果。
性能考量
使用--disable_blending参数可能会带来轻微的性能提升,因为跳过了图像混合这一计算步骤。在批量处理大量图像时,这种优化可以累积产生明显的效果。
扩展应用
结合其他OpenPose参数,可以进一步定制输出效果:
- 使用
--render_pose参数控制姿态渲染的阈值 - 通过
--net_resolution调整网络分辨率,平衡精度和速度 - 使用
--number_people_max限制检测的最大人数
总结
OpenPose提供了灵活的渲染输出选项,通过合理配置命令行参数,开发者可以获得符合特定需求的姿态数据表示形式。--disable_blending参数是实现干净姿态骨架输出的关键,为各种计算机视觉应用提供了更多可能性。掌握这些参数的使用方法,可以帮助开发者更好地利用OpenPose进行人体姿态分析和相关研究。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00