基于KAN神经网络的Ikeda映射学习与预测实践
2025-05-14 08:26:54作者:秋泉律Samson
引言
Ikeda映射作为一种典型的混沌系统,在非线性动力学研究中具有重要意义。本文将探讨如何使用新型Kolmogorov-Arnold网络(KAN)对该系统进行建模和预测,分析模型性能表现,并提供优化建议。
数据生成与预处理
Ikeda映射的数学表达式包含非线性三角函数项,通过离散时间步长迭代生成轨迹数据。实验采用单条10,000步的轨迹数据,时间步长设为0.01。数据预处理阶段需要注意:
- 将连续轨迹转换为监督学习格式,即用当前状态(x_n,y_n)预测下一步状态(x_n+1,y_n+1)
- 按95:5比例划分训练集和测试集
- 训练集内部再按80:20划分训练和验证子集
模型构建与训练
采用两层KAN网络结构:
- 输入层:2个节点(对应x_n和y_n)
- 隐藏层:10个节点
- 输出层:2个节点(对应x_n+1和y_n+1)
关键训练参数配置:
- 网格点数(grid)=40
- B样条阶数(k)=3
- 正则化系数(lamb)=0.01
- 熵正则化系数(lamb_entropy)=10
- 使用LBFGS优化器
- 学习率(lr)=0.01
- 训练步数(steps)=50
实验结果分析
单步预测性能
在测试集上获得RMSE=0.262的预测误差,表现出较好的拟合能力。可视化显示:
- 预测值与真实值在短时间尺度上高度吻合
- 激活函数显示出适应非线性动力学所需的复杂形态
- 某些神经元表现出明显的周期性特征
多步预测挑战
采用迭代预测方式时,误差会随时间累积:
- 1000步预测RMSE升至0.660
- 轨迹在相空间中逐渐偏离真实吸引子
- 这是混沌系统对初始条件敏感性的典型表现
优化建议
-
模型结构优化:
- 适当减少网格点数(grid)以提升效率
- 考虑增加网络宽度或深度增强表达能力
-
训练策略改进:
- 降低正则化系数(lamb)以优先保证拟合精度
- 尝试更大的batch size和更多训练步数
- 使用最新代码库支持CUDA加速
-
数据层面优化:
- 可减少样本量至5k左右平衡效率与效果
- 考虑引入多轨迹数据增强泛化性
技术思考
混沌系统的长期预测本质上是具有挑战性的,这反映了动力系统对初始条件的敏感性。KAN网络展现出的自适应激活函数特性,特别适合捕捉此类系统中的非线性相互作用。未来可探索:
- 结合物理约束的混合建模方法
- 引入记忆机制处理时序依赖性
- 开发针对混沌系统的专用正则化策略
结论
本实验证实了KAN网络在非线性动力学建模中的潜力,特别是在单步预测任务上表现良好。虽然长期预测仍面临挑战,但通过合理的结构调整和参数优化,可以进一步提升模型性能。这为复杂系统的数据驱动建模提供了新的技术途径。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
265
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868