基于KAN神经网络的Ikeda映射学习与预测实践
2025-05-14 00:07:45作者:秋泉律Samson
引言
Ikeda映射作为一种典型的混沌系统,在非线性动力学研究中具有重要意义。本文将探讨如何使用新型Kolmogorov-Arnold网络(KAN)对该系统进行建模和预测,分析模型性能表现,并提供优化建议。
数据生成与预处理
Ikeda映射的数学表达式包含非线性三角函数项,通过离散时间步长迭代生成轨迹数据。实验采用单条10,000步的轨迹数据,时间步长设为0.01。数据预处理阶段需要注意:
- 将连续轨迹转换为监督学习格式,即用当前状态(x_n,y_n)预测下一步状态(x_n+1,y_n+1)
- 按95:5比例划分训练集和测试集
- 训练集内部再按80:20划分训练和验证子集
模型构建与训练
采用两层KAN网络结构:
- 输入层:2个节点(对应x_n和y_n)
- 隐藏层:10个节点
- 输出层:2个节点(对应x_n+1和y_n+1)
关键训练参数配置:
- 网格点数(grid)=40
- B样条阶数(k)=3
- 正则化系数(lamb)=0.01
- 熵正则化系数(lamb_entropy)=10
- 使用LBFGS优化器
- 学习率(lr)=0.01
- 训练步数(steps)=50
实验结果分析
单步预测性能
在测试集上获得RMSE=0.262的预测误差,表现出较好的拟合能力。可视化显示:
- 预测值与真实值在短时间尺度上高度吻合
- 激活函数显示出适应非线性动力学所需的复杂形态
- 某些神经元表现出明显的周期性特征
多步预测挑战
采用迭代预测方式时,误差会随时间累积:
- 1000步预测RMSE升至0.660
- 轨迹在相空间中逐渐偏离真实吸引子
- 这是混沌系统对初始条件敏感性的典型表现
优化建议
-
模型结构优化:
- 适当减少网格点数(grid)以提升效率
- 考虑增加网络宽度或深度增强表达能力
-
训练策略改进:
- 降低正则化系数(lamb)以优先保证拟合精度
- 尝试更大的batch size和更多训练步数
- 使用最新代码库支持CUDA加速
-
数据层面优化:
- 可减少样本量至5k左右平衡效率与效果
- 考虑引入多轨迹数据增强泛化性
技术思考
混沌系统的长期预测本质上是具有挑战性的,这反映了动力系统对初始条件的敏感性。KAN网络展现出的自适应激活函数特性,特别适合捕捉此类系统中的非线性相互作用。未来可探索:
- 结合物理约束的混合建模方法
- 引入记忆机制处理时序依赖性
- 开发针对混沌系统的专用正则化策略
结论
本实验证实了KAN网络在非线性动力学建模中的潜力,特别是在单步预测任务上表现良好。虽然长期预测仍面临挑战,但通过合理的结构调整和参数优化,可以进一步提升模型性能。这为复杂系统的数据驱动建模提供了新的技术途径。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
311
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
845
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
693
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120