Keras 3中AttentionLayer返回注意力分数的限制分析
2025-04-30 01:27:19作者:董宙帆
在Keras 3框架中,当使用AttentionLayer及其相关注意力层类时,开发者可能会遇到一个特定的限制:无法在调用call方法时同时使用符号化的KerasTensor输入和设置return_attention_scores=True参数。这个问题在Keras 3.6.0版本中尤为明显。
问题现象
当尝试以下代码时:
in1 = keras.Input(shape=(10, 7))
in2 = keras.Input(shape=(8, 7))
attLayer = keras.layers.Attention()
out1, out2 = attLayer([in1, in2], return_attention_scores=True)
系统会抛出NotImplementedError异常,提示"Iterating over a symbolic KerasTensor is not supported"。这表明Keras 3当前不支持对符号化张量进行迭代操作。
技术背景
在Keras 3中,符号化张量(KerasTensor)与即时执行模式下的张量有着本质区别:
- 符号化张量是模型构建阶段的占位符,不包含实际数据
- 即时执行张量则包含具体数值,可以立即计算
- 注意力分数是模型运行时的计算结果,需要实际数据才能生成
解决方案
目前有两种可行的解决方法:
-
使用即时执行模式:将符号化输入替换为实际的numpy数组,这样可以直接获取注意力分数。
-
构建模型封装类:创建一个继承自Model的自定义类,在call方法中处理注意力分数的返回。
class AttentionModel(Model):
def __init__(self):
super().__init__()
self.attention = layers.Attention()
def call(self, inputs):
in1, in2 = inputs
return self.attention([in1, in2], return_attention_scores=True)
深入分析
这个问题实际上反映了Keras 3架构设计上的一个变化。在Keras 2中,即时执行是默认模式,因此可以直接获取中间结果。而Keras 3更倾向于图执行模式,以提高生产环境中的性能。
值得注意的是,通过显式调用layer.build和layer.call方法,可以绕过这个限制:
attLayer.build([in1.shape, in2.shape])
out1, out2 = attLayer.call([in1, in2], return_attention_scores=True)
这表明问题可能源于layer.__call__方法在符号化调用时忽略了某些kwargs参数。
最佳实践建议
对于需要获取注意力分数的场景,建议:
- 在模型构建阶段保持符号化张量的使用
- 在模型训练或推理阶段通过回调或自定义方法获取注意力分数
- 考虑使用专门的注意力可视化工具或方法
这种设计虽然增加了获取中间结果的复杂度,但有助于保持模型定义与执行的分离,符合现代深度学习框架的设计理念。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
200
81
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
274
311
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
693
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
107
120