Keras 3中AttentionLayer返回注意力分数的限制分析
2025-04-30 01:27:19作者:董宙帆
在Keras 3框架中,当使用AttentionLayer及其相关注意力层类时,开发者可能会遇到一个特定的限制:无法在调用call方法时同时使用符号化的KerasTensor输入和设置return_attention_scores=True参数。这个问题在Keras 3.6.0版本中尤为明显。
问题现象
当尝试以下代码时:
in1 = keras.Input(shape=(10, 7))
in2 = keras.Input(shape=(8, 7))
attLayer = keras.layers.Attention()
out1, out2 = attLayer([in1, in2], return_attention_scores=True)
系统会抛出NotImplementedError异常,提示"Iterating over a symbolic KerasTensor is not supported"。这表明Keras 3当前不支持对符号化张量进行迭代操作。
技术背景
在Keras 3中,符号化张量(KerasTensor)与即时执行模式下的张量有着本质区别:
- 符号化张量是模型构建阶段的占位符,不包含实际数据
- 即时执行张量则包含具体数值,可以立即计算
- 注意力分数是模型运行时的计算结果,需要实际数据才能生成
解决方案
目前有两种可行的解决方法:
-
使用即时执行模式:将符号化输入替换为实际的numpy数组,这样可以直接获取注意力分数。
-
构建模型封装类:创建一个继承自Model的自定义类,在call方法中处理注意力分数的返回。
class AttentionModel(Model):
def __init__(self):
super().__init__()
self.attention = layers.Attention()
def call(self, inputs):
in1, in2 = inputs
return self.attention([in1, in2], return_attention_scores=True)
深入分析
这个问题实际上反映了Keras 3架构设计上的一个变化。在Keras 2中,即时执行是默认模式,因此可以直接获取中间结果。而Keras 3更倾向于图执行模式,以提高生产环境中的性能。
值得注意的是,通过显式调用layer.build和layer.call方法,可以绕过这个限制:
attLayer.build([in1.shape, in2.shape])
out1, out2 = attLayer.call([in1, in2], return_attention_scores=True)
这表明问题可能源于layer.__call__方法在符号化调用时忽略了某些kwargs参数。
最佳实践建议
对于需要获取注意力分数的场景,建议:
- 在模型构建阶段保持符号化张量的使用
- 在模型训练或推理阶段通过回调或自定义方法获取注意力分数
- 考虑使用专门的注意力可视化工具或方法
这种设计虽然增加了获取中间结果的复杂度,但有助于保持模型定义与执行的分离,符合现代深度学习框架的设计理念。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896