eunomia-bpf项目:MySQL 8.0.40版本下SQL查询追踪的技术实践
在数据库性能分析和问题排查过程中,对SQL查询的执行情况进行实时监控是一项非常有价值的工作。本文将详细介绍如何使用eunomia-bpf项目中的BPF技术来追踪MySQL 8.0.40版本的SQL查询执行情况。
背景与挑战
MySQL作为最流行的关系型数据库之一,其内部执行机制随着版本迭代不断变化。在MySQL 8.0.40版本中,我们发现传统的dispatch_command函数符号名称发生了变化,且参数结构也有所调整,这给基于BPF的追踪带来了新的挑战。
技术实现方案
1. 符号名称解析
在MySQL 8.0.40版本中,dispatch_command函数的符号名称经过C++名称修饰后变为_Z16dispatch_commandP3THDPK8COM_DATA19enum_server_command。通过c++filt工具可以将其还原为可读形式:
echo 'uprobe:/usr/sbin/mysqld:_Z16dispatch_commandP3THDPK8COM_DATA19enum_server_command' | c++filt
输出结果为:
uprobe:/usr/sbin/mysqld:dispatch_command(THD*, COM_DATA const*, enum_server_command)
2. 参数结构分析
MySQL 8.0.40版本中,dispatch_command函数的第二个参数是一个指向COM_DATA联合体的指针。这个联合体包含了不同类型的命令数据,其中com_query成员专门用于存储SQL查询信息。
我们需要在BPF程序中定义相应的数据结构:
struct COM_QUERY_DATA {
const char *query; // 查询字符串指针
unsigned int length; // 查询字符串长度
};
union COM_DATA {
struct COM_QUERY_DATA com_query;
// 其他命令类型的数据结构
};
3. BPF程序实现
基于上述分析,我们实现了完整的BPF追踪程序:
#!/usr/bin/env bpftrace
// 定义COM_QUERY_DATA结构
struct COM_QUERY_DATA {
const char *query;
unsigned int length;
};
// 定义COM_DATA联合
union COM_DATA {
struct COM_QUERY_DATA com_query;
// 其他类型省略
};
// 跟踪MySQL中的dispatch_command函数
uprobe:/usr/sbin/mysqld:_Z16dispatch_commandP3THDPK8COM_DATA19enum_server_command
{
// 记录开始时间
@start_times[tid] = nsecs;
// 获取COM_DATA指针
$com_data_ptr = (union COM_DATA *)arg1;
// 提取SQL查询字符串
$query = str($com_data_ptr->com_query.query);
// 输出查询信息
printf("MySQL command executed by PID %d: SQL Query: %s\n", pid, $query);
}
// 跟踪函数返回
uprobe:/usr/sbin/mysqld:_Z16dispatch_commandP3THDPK8COM_DATA19enum_server_command
{
// 计算执行时间
$start = @start_times[tid];
$delta = (nsecs - $start) / 1000000;
// 输出执行时间
printf("Latency: %u ms\n", $delta);
// 清理map
delete(@start_times[tid]);
}
技术要点解析
-
符号名称处理:MySQL 8.0.40使用C++名称修饰,需要通过c++filt工具解析出实际函数签名。
-
参数访问:
COM_DATA是一个联合体,需要正确解析其内部结构才能获取SQL查询字符串。 -
性能监控:通过记录函数进入和退出的时间戳,可以精确计算SQL查询的执行时间。
-
线程安全:使用线程ID(tid)作为map的key,确保在多线程环境下的正确性。
实际应用价值
该技术方案可以应用于:
- 生产环境SQL查询监控
- 慢查询分析
- 数据库性能优化
- 异常SQL检测
- 数据库审计
总结
通过对MySQL 8.0.40内部机制的深入分析和BPF技术的灵活运用,我们成功实现了对SQL查询的实时监控。这一技术方案不仅解决了新版本MySQL的兼容性问题,还为数据库性能分析提供了强有力的工具。eunomia-bpf项目的这一实践展示了BPF技术在数据库领域的强大应用潜力。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00