深入解析Gemini 2.5 AI工程工作坊:结构化输出与函数调用实战指南
2025-06-05 05:30:35作者:何举烈Damon
前言
在现代AI应用开发中,将大语言模型的能力与结构化数据处理和外部系统集成是提升应用实用性的关键。Gemini 2.5 AI工程工作坊提供了强大的工具集来解决这些需求。本文将深入解析该工作坊中关于结构化输出、函数调用和原生工具使用的核心技术。
结构化输出:从自由文本到精准数据
结构化输出是Gemini API的一项核心功能,它允许开发者将模型的自由文本响应约束为预定义的JSON格式。这项技术在以下场景中尤为重要:
- 数据提取:从非结构化文本中提取关键信息
- API集成:为下游处理提供一致的数据格式
- 数据库操作:确保数据符合数据库模式要求
- 质量控制:验证响应包含所有必需字段
实战示例:食谱提取
class Recipe(BaseModel):
recipe_name: str
ingredients: List[str]
prep_time_minutes: int
difficulty: str # "easy", "medium", "hard"
servings: int
class RecipeList(BaseModel):
recipes: List[Recipe]
response = client.models.generate_content(
model=MODEL_ID,
contents="给我2个流行的饼干食谱,包含配料和准备细节",
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=RecipeList,
),
)
这个示例展示了如何使用Pydantic模型定义输出结构,并确保Gemini返回符合该结构的数据。这种方法特别适合需要精确数据格式的应用场景。
PDF文档结构化提取实战
在实际业务中,从PDF等非结构化文档中提取信息是常见需求。Gemini结合结构化输出能力可以高效解决这个问题:
class InvoiceItem(BaseModel):
description: str
quantity: int
unit_price: float
total: float
class InvoiceData(BaseModel):
invoice_number: str
date: str
vendor_name: str
vendor_address: str
total_amount: float
items: List[InvoiceItem]
# 上传并处理PDF发票
file_id = client.files.upload(file=pdf_file_path)
response = client.models.generate_content(
model=MODEL_ID,
contents=["从PDF中提取所有发票信息", file_id],
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=InvoiceData,
),
)
这种方法可以大幅减少手动数据录入的工作量,提高业务流程效率。
函数调用:连接AI与外部系统
函数调用是Gemini的另一项强大功能,它允许模型智能地决定何时调用开发者定义的函数。这种能力为AI系统带来了真正的动态性和扩展性。
核心优势
- 外部API集成:连接天气、股票、数据库等服务
- 动态计算:执行实时计算
- 系统交互:执行命令或检索系统信息
- 多步骤工作流:链接函数调用完成复杂任务
天气查询示例
def get_weather(location: str) -> dict:
"""获取指定位置的当前天气"""
weather_data = {
"temperature": 22,
"condition": "sunny",
"humidity": 60,
"location": location,
"feels_like": 24
}
return weather_data
# 定义函数声明
weather_function = {
"name": "get_weather",
"description": "获取指定位置的当前天气",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}
自动函数调用
Gemini Python SDK提供了自动函数调用功能,大幅简化了集成工作:
config = types.GenerateContentConfig(
tools=[get_weather, calculate_area] # 直接传递函数
)
response = client.models.generate_content(
model=MODEL_ID,
contents="东京的天气如何?5x3米的房间面积是多少?",
config=config
)
计算器代理实战
通过函数调用,我们可以构建一个能理解自然语言数学表达式的计算器代理:
def add(a: float, b: float) -> dict:
result = a + b
print(f"计算: {a} + {b} = {result}")
return {"operation": "加法", "result": result}
# 类似定义subtract, multiply, divide函数
calculator_tools = [add, subtract, multiply, divide]
# 处理复杂表达式
response = client.models.generate_content(
model=MODEL_ID,
contents="计算(25 + 15) × 3 - 10。分步骤进行。",
config=types.GenerateContentConfig(tools=calculator_tools)
)
这个示例展示了Gemini如何理解自然语言数学表达式,并自动分解为多个函数调用步骤。
原生工具:扩展AI能力边界
Gemini提供了多种原生工具来增强其能力,其中最实用的是Google搜索集成。
Google搜索集成应用场景
- 时事新闻查询:获取最新事件信息
- 实时数据查找:查询股票价格等动态数据
- 事实核查:验证信息的准确性
- 研究辅助:快速查找相关资料
总结
Gemini 2.5 AI工程工作坊提供的结构化输出、函数调用和原生工具功能,为开发者构建实用AI应用提供了强大支持。通过本文的实战示例,我们可以看到:
- 结构化输出使得从非结构化数据中提取信息变得简单可靠
- 函数调用实现了AI系统与外部服务的无缝集成
- 原生工具扩展了AI的能力范围
这些技术的组合使用可以创建出真正强大、实用的AI应用,解决现实世界中的复杂问题。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
191
2.15 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
968
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23