深入解析Gemini 2.5 AI工程工作坊:结构化输出与函数调用实战指南
2025-06-05 23:30:43作者:何举烈Damon
前言
在现代AI应用开发中,将大语言模型的能力与结构化数据处理和外部系统集成是提升应用实用性的关键。Gemini 2.5 AI工程工作坊提供了强大的工具集来解决这些需求。本文将深入解析该工作坊中关于结构化输出、函数调用和原生工具使用的核心技术。
结构化输出:从自由文本到精准数据
结构化输出是Gemini API的一项核心功能,它允许开发者将模型的自由文本响应约束为预定义的JSON格式。这项技术在以下场景中尤为重要:
- 数据提取:从非结构化文本中提取关键信息
- API集成:为下游处理提供一致的数据格式
- 数据库操作:确保数据符合数据库模式要求
- 质量控制:验证响应包含所有必需字段
实战示例:食谱提取
class Recipe(BaseModel):
recipe_name: str
ingredients: List[str]
prep_time_minutes: int
difficulty: str # "easy", "medium", "hard"
servings: int
class RecipeList(BaseModel):
recipes: List[Recipe]
response = client.models.generate_content(
model=MODEL_ID,
contents="给我2个流行的饼干食谱,包含配料和准备细节",
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=RecipeList,
),
)
这个示例展示了如何使用Pydantic模型定义输出结构,并确保Gemini返回符合该结构的数据。这种方法特别适合需要精确数据格式的应用场景。
PDF文档结构化提取实战
在实际业务中,从PDF等非结构化文档中提取信息是常见需求。Gemini结合结构化输出能力可以高效解决这个问题:
class InvoiceItem(BaseModel):
description: str
quantity: int
unit_price: float
total: float
class InvoiceData(BaseModel):
invoice_number: str
date: str
vendor_name: str
vendor_address: str
total_amount: float
items: List[InvoiceItem]
# 上传并处理PDF发票
file_id = client.files.upload(file=pdf_file_path)
response = client.models.generate_content(
model=MODEL_ID,
contents=["从PDF中提取所有发票信息", file_id],
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=InvoiceData,
),
)
这种方法可以大幅减少手动数据录入的工作量,提高业务流程效率。
函数调用:连接AI与外部系统
函数调用是Gemini的另一项强大功能,它允许模型智能地决定何时调用开发者定义的函数。这种能力为AI系统带来了真正的动态性和扩展性。
核心优势
- 外部API集成:连接天气、股票、数据库等服务
- 动态计算:执行实时计算
- 系统交互:执行命令或检索系统信息
- 多步骤工作流:链接函数调用完成复杂任务
天气查询示例
def get_weather(location: str) -> dict:
"""获取指定位置的当前天气"""
weather_data = {
"temperature": 22,
"condition": "sunny",
"humidity": 60,
"location": location,
"feels_like": 24
}
return weather_data
# 定义函数声明
weather_function = {
"name": "get_weather",
"description": "获取指定位置的当前天气",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}
自动函数调用
Gemini Python SDK提供了自动函数调用功能,大幅简化了集成工作:
config = types.GenerateContentConfig(
tools=[get_weather, calculate_area] # 直接传递函数
)
response = client.models.generate_content(
model=MODEL_ID,
contents="东京的天气如何?5x3米的房间面积是多少?",
config=config
)
计算器代理实战
通过函数调用,我们可以构建一个能理解自然语言数学表达式的计算器代理:
def add(a: float, b: float) -> dict:
result = a + b
print(f"计算: {a} + {b} = {result}")
return {"operation": "加法", "result": result}
# 类似定义subtract, multiply, divide函数
calculator_tools = [add, subtract, multiply, divide]
# 处理复杂表达式
response = client.models.generate_content(
model=MODEL_ID,
contents="计算(25 + 15) × 3 - 10。分步骤进行。",
config=types.GenerateContentConfig(tools=calculator_tools)
)
这个示例展示了Gemini如何理解自然语言数学表达式,并自动分解为多个函数调用步骤。
原生工具:扩展AI能力边界
Gemini提供了多种原生工具来增强其能力,其中最实用的是Google搜索集成。
Google搜索集成应用场景
- 时事新闻查询:获取最新事件信息
- 实时数据查找:查询股票价格等动态数据
- 事实核查:验证信息的准确性
- 研究辅助:快速查找相关资料
总结
Gemini 2.5 AI工程工作坊提供的结构化输出、函数调用和原生工具功能,为开发者构建实用AI应用提供了强大支持。通过本文的实战示例,我们可以看到:
- 结构化输出使得从非结构化数据中提取信息变得简单可靠
- 函数调用实现了AI系统与外部服务的无缝集成
- 原生工具扩展了AI的能力范围
这些技术的组合使用可以创建出真正强大、实用的AI应用,解决现实世界中的复杂问题。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669