深入解析Gemini 2.5 AI工程工作坊:结构化输出与函数调用实战指南
2025-06-05 04:32:05作者:何举烈Damon
前言
在现代AI应用开发中,将大语言模型的能力与结构化数据处理和外部系统集成是提升应用实用性的关键。Gemini 2.5 AI工程工作坊提供了强大的工具集来解决这些需求。本文将深入解析该工作坊中关于结构化输出、函数调用和原生工具使用的核心技术。
结构化输出:从自由文本到精准数据
结构化输出是Gemini API的一项核心功能,它允许开发者将模型的自由文本响应约束为预定义的JSON格式。这项技术在以下场景中尤为重要:
- 数据提取:从非结构化文本中提取关键信息
- API集成:为下游处理提供一致的数据格式
- 数据库操作:确保数据符合数据库模式要求
- 质量控制:验证响应包含所有必需字段
实战示例:食谱提取
class Recipe(BaseModel):
recipe_name: str
ingredients: List[str]
prep_time_minutes: int
difficulty: str # "easy", "medium", "hard"
servings: int
class RecipeList(BaseModel):
recipes: List[Recipe]
response = client.models.generate_content(
model=MODEL_ID,
contents="给我2个流行的饼干食谱,包含配料和准备细节",
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=RecipeList,
),
)
这个示例展示了如何使用Pydantic模型定义输出结构,并确保Gemini返回符合该结构的数据。这种方法特别适合需要精确数据格式的应用场景。
PDF文档结构化提取实战
在实际业务中,从PDF等非结构化文档中提取信息是常见需求。Gemini结合结构化输出能力可以高效解决这个问题:
class InvoiceItem(BaseModel):
description: str
quantity: int
unit_price: float
total: float
class InvoiceData(BaseModel):
invoice_number: str
date: str
vendor_name: str
vendor_address: str
total_amount: float
items: List[InvoiceItem]
# 上传并处理PDF发票
file_id = client.files.upload(file=pdf_file_path)
response = client.models.generate_content(
model=MODEL_ID,
contents=["从PDF中提取所有发票信息", file_id],
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=InvoiceData,
),
)
这种方法可以大幅减少手动数据录入的工作量,提高业务流程效率。
函数调用:连接AI与外部系统
函数调用是Gemini的另一项强大功能,它允许模型智能地决定何时调用开发者定义的函数。这种能力为AI系统带来了真正的动态性和扩展性。
核心优势
- 外部API集成:连接天气、股票、数据库等服务
- 动态计算:执行实时计算
- 系统交互:执行命令或检索系统信息
- 多步骤工作流:链接函数调用完成复杂任务
天气查询示例
def get_weather(location: str) -> dict:
"""获取指定位置的当前天气"""
weather_data = {
"temperature": 22,
"condition": "sunny",
"humidity": 60,
"location": location,
"feels_like": 24
}
return weather_data
# 定义函数声明
weather_function = {
"name": "get_weather",
"description": "获取指定位置的当前天气",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}
自动函数调用
Gemini Python SDK提供了自动函数调用功能,大幅简化了集成工作:
config = types.GenerateContentConfig(
tools=[get_weather, calculate_area] # 直接传递函数
)
response = client.models.generate_content(
model=MODEL_ID,
contents="东京的天气如何?5x3米的房间面积是多少?",
config=config
)
计算器代理实战
通过函数调用,我们可以构建一个能理解自然语言数学表达式的计算器代理:
def add(a: float, b: float) -> dict:
result = a + b
print(f"计算: {a} + {b} = {result}")
return {"operation": "加法", "result": result}
# 类似定义subtract, multiply, divide函数
calculator_tools = [add, subtract, multiply, divide]
# 处理复杂表达式
response = client.models.generate_content(
model=MODEL_ID,
contents="计算(25 + 15) × 3 - 10。分步骤进行。",
config=types.GenerateContentConfig(tools=calculator_tools)
)
这个示例展示了Gemini如何理解自然语言数学表达式,并自动分解为多个函数调用步骤。
原生工具:扩展AI能力边界
Gemini提供了多种原生工具来增强其能力,其中最实用的是Google搜索集成。
Google搜索集成应用场景
- 时事新闻查询:获取最新事件信息
- 实时数据查找:查询股票价格等动态数据
- 事实核查:验证信息的准确性
- 研究辅助:快速查找相关资料
总结
Gemini 2.5 AI工程工作坊提供的结构化输出、函数调用和原生工具功能,为开发者构建实用AI应用提供了强大支持。通过本文的实战示例,我们可以看到:
- 结构化输出使得从非结构化数据中提取信息变得简单可靠
- 函数调用实现了AI系统与外部服务的无缝集成
- 原生工具扩展了AI的能力范围
这些技术的组合使用可以创建出真正强大、实用的AI应用,解决现实世界中的复杂问题。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19