深入解析Gemini 2.5 AI工程工作坊:结构化输出与函数调用实战指南
2025-06-05 17:27:22作者:何举烈Damon
前言
在现代AI应用开发中,将大语言模型的能力与结构化数据处理和外部系统集成是提升应用实用性的关键。Gemini 2.5 AI工程工作坊提供了强大的工具集来解决这些需求。本文将深入解析该工作坊中关于结构化输出、函数调用和原生工具使用的核心技术。
结构化输出:从自由文本到精准数据
结构化输出是Gemini API的一项核心功能,它允许开发者将模型的自由文本响应约束为预定义的JSON格式。这项技术在以下场景中尤为重要:
- 数据提取:从非结构化文本中提取关键信息
- API集成:为下游处理提供一致的数据格式
- 数据库操作:确保数据符合数据库模式要求
- 质量控制:验证响应包含所有必需字段
实战示例:食谱提取
class Recipe(BaseModel):
recipe_name: str
ingredients: List[str]
prep_time_minutes: int
difficulty: str # "easy", "medium", "hard"
servings: int
class RecipeList(BaseModel):
recipes: List[Recipe]
response = client.models.generate_content(
model=MODEL_ID,
contents="给我2个流行的饼干食谱,包含配料和准备细节",
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=RecipeList,
),
)
这个示例展示了如何使用Pydantic模型定义输出结构,并确保Gemini返回符合该结构的数据。这种方法特别适合需要精确数据格式的应用场景。
PDF文档结构化提取实战
在实际业务中,从PDF等非结构化文档中提取信息是常见需求。Gemini结合结构化输出能力可以高效解决这个问题:
class InvoiceItem(BaseModel):
description: str
quantity: int
unit_price: float
total: float
class InvoiceData(BaseModel):
invoice_number: str
date: str
vendor_name: str
vendor_address: str
total_amount: float
items: List[InvoiceItem]
# 上传并处理PDF发票
file_id = client.files.upload(file=pdf_file_path)
response = client.models.generate_content(
model=MODEL_ID,
contents=["从PDF中提取所有发票信息", file_id],
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=InvoiceData,
),
)
这种方法可以大幅减少手动数据录入的工作量,提高业务流程效率。
函数调用:连接AI与外部系统
函数调用是Gemini的另一项强大功能,它允许模型智能地决定何时调用开发者定义的函数。这种能力为AI系统带来了真正的动态性和扩展性。
核心优势
- 外部API集成:连接天气、股票、数据库等服务
- 动态计算:执行实时计算
- 系统交互:执行命令或检索系统信息
- 多步骤工作流:链接函数调用完成复杂任务
天气查询示例
def get_weather(location: str) -> dict:
"""获取指定位置的当前天气"""
weather_data = {
"temperature": 22,
"condition": "sunny",
"humidity": 60,
"location": location,
"feels_like": 24
}
return weather_data
# 定义函数声明
weather_function = {
"name": "get_weather",
"description": "获取指定位置的当前天气",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}
自动函数调用
Gemini Python SDK提供了自动函数调用功能,大幅简化了集成工作:
config = types.GenerateContentConfig(
tools=[get_weather, calculate_area] # 直接传递函数
)
response = client.models.generate_content(
model=MODEL_ID,
contents="东京的天气如何?5x3米的房间面积是多少?",
config=config
)
计算器代理实战
通过函数调用,我们可以构建一个能理解自然语言数学表达式的计算器代理:
def add(a: float, b: float) -> dict:
result = a + b
print(f"计算: {a} + {b} = {result}")
return {"operation": "加法", "result": result}
# 类似定义subtract, multiply, divide函数
calculator_tools = [add, subtract, multiply, divide]
# 处理复杂表达式
response = client.models.generate_content(
model=MODEL_ID,
contents="计算(25 + 15) × 3 - 10。分步骤进行。",
config=types.GenerateContentConfig(tools=calculator_tools)
)
这个示例展示了Gemini如何理解自然语言数学表达式,并自动分解为多个函数调用步骤。
原生工具:扩展AI能力边界
Gemini提供了多种原生工具来增强其能力,其中最实用的是Google搜索集成。
Google搜索集成应用场景
- 时事新闻查询:获取最新事件信息
- 实时数据查找:查询股票价格等动态数据
- 事实核查:验证信息的准确性
- 研究辅助:快速查找相关资料
总结
Gemini 2.5 AI工程工作坊提供的结构化输出、函数调用和原生工具功能,为开发者构建实用AI应用提供了强大支持。通过本文的实战示例,我们可以看到:
- 结构化输出使得从非结构化数据中提取信息变得简单可靠
- 函数调用实现了AI系统与外部服务的无缝集成
- 原生工具扩展了AI的能力范围
这些技术的组合使用可以创建出真正强大、实用的AI应用,解决现实世界中的复杂问题。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
204
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
284
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
634
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873