StickyLand 开源项目安装与使用指南
2024-09-22 14:04:44作者:伍希望
StickyLand 是一个旨在打破 Jupyter Notebooks 线性展示方式的开源项目,通过引入“粘性单元格”功能,允许用户自由拖拽创建和排列代码或Markdown单元格,构建非线性的交互式笔记本环境。
1. 项目目录结构及介绍
stickyland
├── github/workflows # GitHub Actions 工作流配置文件
├── examples # 示例文件夹,包含应用示例
├── jupyterlab_stickyland # JupyterLab 扩展的核心代码
├── src # 主要源代码存放位置
├── style # CSS样式文件
├── .eslintignore # ESLint 忽略文件配置
├── .eslintrc.js # ESLint 配置文件
├── .gitattributes # Git 属性文件
├── .gitignore # Git忽略文件列表
├── prettierignore # Prettier 忽略文件配置
├── prettierrc # Prettier 格式化配置
├── yarnrc.yml # Yarn 配置文件
├── CHANGELOG.md # 版本更新日志
├── LICENSE # 许可证文件,采用BSD-3-Clause许可
├── MANIFEST.in # Python打包时所需文件清单
├── README.md # 项目介绍文档
├── RELEASE.md # 发布说明
├── install.json # 安装配置文件(可能用于JupyterLab插件管理)
├── package.json # NPM包配置文件
├── pyproject.toml # Python项目配置
├── setup.py # Python安装脚本
├── tsconfig.json # TypeScript编译配置
└── yarn.lock # Yarn依赖锁定文件
2. 项目的启动文件介绍
在 stickyland 项目中,并没有直接指定一个单一的“启动文件”,因为这个项目主要是作为JupyterLab的一个扩展开发。用户并不直接运行这个仓库中的任何脚本来启动项目。安装并使用StickyLand主要涉及的是对JupyterLab环境的配置和扩展安装过程,具体步骤如下:
- 安装JupyterLab
- 通过pip安装StickyLand: 使用命令
pip install stickyland。
若需从源码构建和开发,开发者需要执行以下命令来搭建开发环境并启动JupyterLab进行测试:
# 在项目根目录下
jlpm install # 或者使用yarn安装依赖
jlpm run build # 构建项目
pip install -e . # 安装开发版本
jupyter lab # 启动JupyterLab
3. 项目的配置文件介绍
3.1 主要配置文件
-
package.json 和 pyproject.toml:定义了项目的元数据,包括依赖项、构建指令等。
-
.eslintrc.js, prettierrc: 这些是JavaScript和代码风格相关的配置文件,用于统一代码风格和进行静态代码分析。
-
tsconfig.json: TypeScript编译器的配置文件,指导TypeScript如何编译到JavaScript。
对于实际的运行配置,StickyLand更多地依赖于用户的JupyterLab配置以及Python环境设置。JupyterLab本身可以通过.jupyter/labconfig下的配置文件进行自定义,但这些通常不是StickyLand直接提供的部分,而是用户依据个人需求调整的。
由于StickyLand专注于作为JupyterLab的扩展,其核心配置逻辑内嵌于代码之中,用户端并不直接编辑特定的StickyLand配置文件来控制行为,而是通过JupyterLab的UI界面或命令来管理和配置该扩展的功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178