StickyLand 开源项目安装与使用指南
2024-09-22 21:32:51作者:伍希望
StickyLand 是一个旨在打破 Jupyter Notebooks 线性展示方式的开源项目,通过引入“粘性单元格”功能,允许用户自由拖拽创建和排列代码或Markdown单元格,构建非线性的交互式笔记本环境。
1. 项目目录结构及介绍
stickyland
├── github/workflows # GitHub Actions 工作流配置文件
├── examples # 示例文件夹,包含应用示例
├── jupyterlab_stickyland # JupyterLab 扩展的核心代码
├── src # 主要源代码存放位置
├── style # CSS样式文件
├── .eslintignore # ESLint 忽略文件配置
├── .eslintrc.js # ESLint 配置文件
├── .gitattributes # Git 属性文件
├── .gitignore # Git忽略文件列表
├── prettierignore # Prettier 忽略文件配置
├── prettierrc # Prettier 格式化配置
├── yarnrc.yml # Yarn 配置文件
├── CHANGELOG.md # 版本更新日志
├── LICENSE # 许可证文件,采用BSD-3-Clause许可
├── MANIFEST.in # Python打包时所需文件清单
├── README.md # 项目介绍文档
├── RELEASE.md # 发布说明
├── install.json # 安装配置文件(可能用于JupyterLab插件管理)
├── package.json # NPM包配置文件
├── pyproject.toml # Python项目配置
├── setup.py # Python安装脚本
├── tsconfig.json # TypeScript编译配置
└── yarn.lock # Yarn依赖锁定文件
2. 项目的启动文件介绍
在 stickyland
项目中,并没有直接指定一个单一的“启动文件”,因为这个项目主要是作为JupyterLab的一个扩展开发。用户并不直接运行这个仓库中的任何脚本来启动项目。安装并使用StickyLand主要涉及的是对JupyterLab环境的配置和扩展安装过程,具体步骤如下:
- 安装JupyterLab
- 通过pip安装StickyLand: 使用命令
pip install stickyland
。
若需从源码构建和开发,开发者需要执行以下命令来搭建开发环境并启动JupyterLab进行测试:
# 在项目根目录下
jlpm install # 或者使用yarn安装依赖
jlpm run build # 构建项目
pip install -e . # 安装开发版本
jupyter lab # 启动JupyterLab
3. 项目的配置文件介绍
3.1 主要配置文件
-
package.json 和 pyproject.toml:定义了项目的元数据,包括依赖项、构建指令等。
-
.eslintrc.js, prettierrc: 这些是JavaScript和代码风格相关的配置文件,用于统一代码风格和进行静态代码分析。
-
tsconfig.json: TypeScript编译器的配置文件,指导TypeScript如何编译到JavaScript。
对于实际的运行配置,StickyLand更多地依赖于用户的JupyterLab配置以及Python环境设置。JupyterLab本身可以通过.jupyter/labconfig
下的配置文件进行自定义,但这些通常不是StickyLand直接提供的部分,而是用户依据个人需求调整的。
由于StickyLand专注于作为JupyterLab的扩展,其核心配置逻辑内嵌于代码之中,用户端并不直接编辑特定的StickyLand配置文件来控制行为,而是通过JupyterLab的UI界面或命令来管理和配置该扩展的功能。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133