StickyLand 开源项目安装与使用指南
2024-09-22 07:49:34作者:伍希望
StickyLand 是一个旨在打破 Jupyter Notebooks 线性展示方式的开源项目,通过引入“粘性单元格”功能,允许用户自由拖拽创建和排列代码或Markdown单元格,构建非线性的交互式笔记本环境。
1. 项目目录结构及介绍
stickyland
├── github/workflows # GitHub Actions 工作流配置文件
├── examples # 示例文件夹,包含应用示例
├── jupyterlab_stickyland # JupyterLab 扩展的核心代码
├── src # 主要源代码存放位置
├── style # CSS样式文件
├── .eslintignore # ESLint 忽略文件配置
├── .eslintrc.js # ESLint 配置文件
├── .gitattributes # Git 属性文件
├── .gitignore # Git忽略文件列表
├── prettierignore # Prettier 忽略文件配置
├── prettierrc # Prettier 格式化配置
├── yarnrc.yml # Yarn 配置文件
├── CHANGELOG.md # 版本更新日志
├── LICENSE # 许可证文件,采用BSD-3-Clause许可
├── MANIFEST.in # Python打包时所需文件清单
├── README.md # 项目介绍文档
├── RELEASE.md # 发布说明
├── install.json # 安装配置文件(可能用于JupyterLab插件管理)
├── package.json # NPM包配置文件
├── pyproject.toml # Python项目配置
├── setup.py # Python安装脚本
├── tsconfig.json # TypeScript编译配置
└── yarn.lock # Yarn依赖锁定文件
2. 项目的启动文件介绍
在 stickyland
项目中,并没有直接指定一个单一的“启动文件”,因为这个项目主要是作为JupyterLab的一个扩展开发。用户并不直接运行这个仓库中的任何脚本来启动项目。安装并使用StickyLand主要涉及的是对JupyterLab环境的配置和扩展安装过程,具体步骤如下:
- 安装JupyterLab
- 通过pip安装StickyLand: 使用命令
pip install stickyland
。
若需从源码构建和开发,开发者需要执行以下命令来搭建开发环境并启动JupyterLab进行测试:
# 在项目根目录下
jlpm install # 或者使用yarn安装依赖
jlpm run build # 构建项目
pip install -e . # 安装开发版本
jupyter lab # 启动JupyterLab
3. 项目的配置文件介绍
3.1 主要配置文件
-
package.json 和 pyproject.toml:定义了项目的元数据,包括依赖项、构建指令等。
-
.eslintrc.js, prettierrc: 这些是JavaScript和代码风格相关的配置文件,用于统一代码风格和进行静态代码分析。
-
tsconfig.json: TypeScript编译器的配置文件,指导TypeScript如何编译到JavaScript。
对于实际的运行配置,StickyLand更多地依赖于用户的JupyterLab配置以及Python环境设置。JupyterLab本身可以通过.jupyter/labconfig
下的配置文件进行自定义,但这些通常不是StickyLand直接提供的部分,而是用户依据个人需求调整的。
由于StickyLand专注于作为JupyterLab的扩展,其核心配置逻辑内嵌于代码之中,用户端并不直接编辑特定的StickyLand配置文件来控制行为,而是通过JupyterLab的UI界面或命令来管理和配置该扩展的功能。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5