StickyLand 开源项目安装与使用指南
2024-09-22 05:12:15作者:伍希望
StickyLand 是一个旨在打破 Jupyter Notebooks 线性展示方式的开源项目,通过引入“粘性单元格”功能,允许用户自由拖拽创建和排列代码或Markdown单元格,构建非线性的交互式笔记本环境。
1. 项目目录结构及介绍
stickyland
├── github/workflows # GitHub Actions 工作流配置文件
├── examples # 示例文件夹,包含应用示例
├── jupyterlab_stickyland # JupyterLab 扩展的核心代码
├── src # 主要源代码存放位置
├── style # CSS样式文件
├── .eslintignore # ESLint 忽略文件配置
├── .eslintrc.js # ESLint 配置文件
├── .gitattributes # Git 属性文件
├── .gitignore # Git忽略文件列表
├── prettierignore # Prettier 忽略文件配置
├── prettierrc # Prettier 格式化配置
├── yarnrc.yml # Yarn 配置文件
├── CHANGELOG.md # 版本更新日志
├── LICENSE # 许可证文件,采用BSD-3-Clause许可
├── MANIFEST.in # Python打包时所需文件清单
├── README.md # 项目介绍文档
├── RELEASE.md # 发布说明
├── install.json # 安装配置文件(可能用于JupyterLab插件管理)
├── package.json # NPM包配置文件
├── pyproject.toml # Python项目配置
├── setup.py # Python安装脚本
├── tsconfig.json # TypeScript编译配置
└── yarn.lock # Yarn依赖锁定文件
2. 项目的启动文件介绍
在 stickyland 项目中,并没有直接指定一个单一的“启动文件”,因为这个项目主要是作为JupyterLab的一个扩展开发。用户并不直接运行这个仓库中的任何脚本来启动项目。安装并使用StickyLand主要涉及的是对JupyterLab环境的配置和扩展安装过程,具体步骤如下:
- 安装JupyterLab
- 通过pip安装StickyLand: 使用命令
pip install stickyland。
若需从源码构建和开发,开发者需要执行以下命令来搭建开发环境并启动JupyterLab进行测试:
# 在项目根目录下
jlpm install # 或者使用yarn安装依赖
jlpm run build # 构建项目
pip install -e . # 安装开发版本
jupyter lab # 启动JupyterLab
3. 项目的配置文件介绍
3.1 主要配置文件
-
package.json 和 pyproject.toml:定义了项目的元数据,包括依赖项、构建指令等。
-
.eslintrc.js, prettierrc: 这些是JavaScript和代码风格相关的配置文件,用于统一代码风格和进行静态代码分析。
-
tsconfig.json: TypeScript编译器的配置文件,指导TypeScript如何编译到JavaScript。
对于实际的运行配置,StickyLand更多地依赖于用户的JupyterLab配置以及Python环境设置。JupyterLab本身可以通过.jupyter/labconfig下的配置文件进行自定义,但这些通常不是StickyLand直接提供的部分,而是用户依据个人需求调整的。
由于StickyLand专注于作为JupyterLab的扩展,其核心配置逻辑内嵌于代码之中,用户端并不直接编辑特定的StickyLand配置文件来控制行为,而是通过JupyterLab的UI界面或命令来管理和配置该扩展的功能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1