Datachain项目中的数据分割功能设计与实现
2025-06-30 13:09:14作者:舒璇辛Bertina
在机器学习工作流中,将数据集划分为训练集、测试集和验证集是一个基础但至关重要的环节。Datachain项目作为一个数据处理框架,需要提供高效可靠的数据分割功能来支持完整的机器学习流程。
当前实现方案分析
目前用户可以通过Datachain的组合操作实现数据分割,主要步骤如下:
- 使用随机选择函数为每条数据分配"train"、"test"或"val"标签
- 根据标签过滤出不同子集
- 将各子集保存为独立数据集
这种实现存在三个主要问题:
- 操作较为冗长,对于常见需求不够简洁
- 使用了用户定义函数(UDF),计算开销较大
- 随机分割结果不稳定,缺乏种子控制机制
技术改进方向
核心需求
- 轻量级实现:应避免UDF,直接在数据库层面完成操作
- 随机性控制:利用系统内置的
sys.rand实现可重复的随机分割 - 简洁API:提供类似scikit-learn和HuggingFace的友好接口
关键技术点
随机数生成优化
- 使用
sys.rand作为基础随机源 - 支持种子参数,通过XOR运算保证可重复性
- 默认启用随机打乱(shuffle),特殊情况可考虑基于
sys.id的确定性排序
API设计 基础功能应支持:
- 训练集比例(train_size)
- 测试集比例(test_size)
- 随机种子(seed)
高级功能可后续扩展:
- 分层抽样(stratify)
- 多阶段分割(n_splits)
- 自定义分割比例
实现方案
建议在项目中新增toolkit模块,提供train_test_split等实用函数。函数签名可设计为:
def train_test_split(
dataset: DataChain,
train_size: float = 0.7,
test_size: float = 0.2,
seed: Optional[int] = None
) -> Tuple[DataChain, DataChain, DataChain]:
实现原理:
- 利用
sys.rand ^ seed生成确定性随机数 - 根据比例阈值分配数据到不同子集
- 返回三个独立的DataChain实例
未来扩展
- 与HuggingFace数据集兼容
- 支持更复杂的分割策略(如时间序列分割)
- 添加数据分布分析功能,确保分割后数据分布一致
通过这样的改进,Datachain将能提供更专业、高效的数据准备能力,大幅提升机器学习工作流的顺畅度。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869